在以O(shè)為極點(diǎn)的極坐標(biāo)系中,圓ρ=4sinθ和直線ρsinθ=a相交于A、B兩點(diǎn),若△AOB是等邊三角形,則a的值為
 
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:把極坐標(biāo)方程化為直角坐標(biāo)方程,求出B的坐標(biāo)的值,代入x2+(y-2)2=4,可得a的值.
解答: 解:直線ρsinθ=a即y=a,(a>0),曲線ρ=4sinθ,
即ρ2=4ρsinθ,即x2+(y-2)2=4,表示以C(0,2)為圓心,以2為半徑的圓,
∵△AOB是等邊三角形,∴B(
3
3
a,a),
代入x2+(y-2)2=4,可得(
3
3
a)2+(a-2)2=4,
∵a>0,∴a=3.
故答案為:3.
點(diǎn)評(píng):本題考查把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,直線和圓的位置關(guān)系,求出B的坐標(biāo)是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,四邊形ABCD為矩形,PD⊥平面ABCD,AB=1,BC=PC=2作如圖2折疊;折痕EF∥DC,其中點(diǎn)E,F(xiàn)分別在線段PD,PC上,沿EF折疊后點(diǎn)P疊在線段AD上的點(diǎn)記為M,并且MF⊥CF.
(1)證明:CF⊥平面MDF;
(2)求三棱錐M-CDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,點(diǎn)P在平面ABC上的射影D是AC的中點(diǎn),BC=2AC=8,AB=4
5

(Ⅰ)證明:平面PBC⊥平面PAC;
(Ⅱ)若PD=2
3
,求二面角A-PB-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
m2
-
y2
n2
=1(m>n>0)和橢圓
x2
m2
+
y2
n2
=1(m>n>0)的離心率分別為e1和e2,則e1e2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn≥S5=-20,n∈N*,則數(shù)列公差d的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點(diǎn)(2,
π
6
)到直線ρsin(θ-
π
6
)=1的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an},{an2}(n∈N*)都是等差數(shù)列,若a1=3,則a1+a22+a33=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為
2
的正四棱柱的各頂點(diǎn)均在同一球面上,則該球的體積為( 。
A、
32π
3
B、4π
C、2π
D、
4
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為回饋顧客,某商場(chǎng)擬通過摸球兌獎(jiǎng)的方式對(duì)1000位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有4個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個(gè)球,球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額.
(1)若袋中所裝的4個(gè)球中有1個(gè)所標(biāo)的面值為50元,其余3個(gè)均為10元,求:
①顧客所獲的獎(jiǎng)勵(lì)額為60元的概率;
②顧客所獲的獎(jiǎng)勵(lì)額的分布列及數(shù)學(xué)期望;
(2)商場(chǎng)對(duì)獎(jiǎng)勵(lì)總額的預(yù)算是60000元,并規(guī)定袋中的4個(gè)球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場(chǎng)的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,請(qǐng)對(duì)袋中的4個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案