設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①若m⊥α,n⊥α,則m⊥n;②若α∥β,β∥γ,m⊥α,則m⊥γ;
③若m∥α,n∥α,則m∥n;④若α⊥γ,β⊥γ,則α∥β.
其中正確命題的序號(hào)是
 
考點(diǎn):命題的真假判斷與應(yīng)用,空間中直線與直線之間的位置關(guān)系,空間中直線與平面之間的位置關(guān)系,平面與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:①利用線面垂直的性質(zhì)可得:若m⊥α,n⊥α,則m∥n;
②利用平面平行的傳遞性和平行平面的性質(zhì)可得:若α∥β,β∥γ,則α∥γ,又m⊥α,則m⊥γ;
③利用線面平行的性質(zhì)可得:若m∥α,n∥α,則m∥n、相交或?yàn)楫惷嬷本;
④利用面面垂直的性質(zhì)可得:若α⊥γ,β⊥γ,則α∥β或相交.
解答: 解:①若m⊥α,n⊥α,則m∥n,因此①不正確;
②若α∥β,β∥γ,則α∥γ,又m⊥α,則m⊥γ,正確;
③若m∥α,n∥α,則m∥n、相交或?yàn)楫惷嬷本,因此不正確;
④若α⊥γ,β⊥γ,則α∥β或相交,因此不正確.
綜上可知:只有②正確.
點(diǎn)評(píng):本題綜合考查了空間中線面的位置關(guān)系及其判定性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
a
x
,g(x)=x2-bx a、b∈R.
(1)若集合{x|f(x)=2x+2}只含有一個(gè)元素,試求實(shí)數(shù)a的值;
(2)在(1)的條件下,當(dāng)m∈[2,4],n∈[1,5]時(shí)有f(m)大于等于g(n)恒成立,試求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-1,1)、B(1,2)、C(-2,1)、D(3,4),則向量
AB
CD
方向上的投影為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的三視圖如圖所示,已知這個(gè)幾何體的體積為10
3
,則h=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)是定義域?yàn)镽,周期為2的周期函數(shù),且當(dāng)x∈[-1,1)時(shí),f(x)=1-x2;已知函數(shù)g(x)=
lg|x|,x≠0
1,x=0
,則函數(shù)f(x)和g(x)的圖象在區(qū)間[-5,10]內(nèi)公共點(diǎn)的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐P-ABCD中,底面ABCD為邊長(zhǎng)為2的菱形∠BAD=60°,PA=PD=2,平面PAD⊥平面ABCD,則它的正視圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+ax+7-a
x+1
,a∈R.若對(duì)于任意的x∈N*,f(x)≥4恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域?yàn)镽的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2]時(shí),f(x)=
x2-x,x∈[0,1)
-(
1
2
)|x-2|,x∈[1,2]
,若x∈[-2,0]時(shí),f(x)≥
t
2
-
1
t
恒成立,則實(shí)數(shù)t的取值范圍是( 。
A、[-2,0)∪(0,1)
B、[-2,0)∪[1,+∞)
C、[-2,1]
D、(-∞,-2]∪(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓具有如下性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P是橢圓上的任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時(shí),則kPM與kPN之積是與點(diǎn)P位置無關(guān)的定值.試寫出雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)具有的類似的性質(zhì),并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案