已知函數(shù)f(x)=x+
a
x
,g(x)=x2-bx a、b∈R.
(1)若集合{x|f(x)=2x+2}只含有一個(gè)元素,試求實(shí)數(shù)a的值;
(2)在(1)的條件下,當(dāng)m∈[2,4],n∈[1,5]時(shí)有f(m)大于等于g(n)恒成立,試求實(shí)數(shù)b的取值范圍.
考點(diǎn):函數(shù)恒成立問題
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)f(x)=2x+2}轉(zhuǎn)化為x2+2x-a=0,利用根的判別式為0,可求若集合{x|f(x)=2x+2}只含有一個(gè)元素,實(shí)數(shù)a的值;
(2)求出f(m)的最小值,問題轉(zhuǎn)化為n2-bn≤
3
2
,n∈[1,5]時(shí)恒成立,分離參數(shù)求最值,即可求實(shí)數(shù)b的取值范圍.
解答: 解:(1)f(x)=2x+2,即x+
a
x
=2x+2,
∴x2+2x-a=0.
∵集合{x|f(x)=2x+2}只含有一個(gè)元素,
∴△=4+4a=0,
∴a=-1;
(2)f(m)=m-
1
m
,∵m∈[2,4],∴f(m)min=2-
1
2
=
3
2
,
∵當(dāng)m∈[2,4],n∈[1,5]時(shí)有f(m)大于等于g(n)恒成立,
∴n2-bn≤
3
2
,n∈[1,5]時(shí)恒成立,
∴b≥n-
3
2n

∵y=n-
3
2n
,n∈[1,5]時(shí)單調(diào)遞增,
∴b≥1-
3
2
=-
1
2
點(diǎn)評:本題考查函數(shù)恒成立問題,考查函數(shù)的最值,考查分離參數(shù)法的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

請畫出如圖幾何體的三視圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax+2,g(x)=aln(x-1)-2a+6(a為常數(shù)),
(1)當(dāng)x∈[2,+∞)時(shí)f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)h(x)=xf(x)有對稱中心為A(1,0),求證:函數(shù)h(x)的切線L在切點(diǎn)處穿過h(x)圖象的充要條件是L恰為函數(shù)在點(diǎn)A處的切線.(直線穿過曲線是指:直線與曲線有交點(diǎn),且在交點(diǎn)左右附近曲線在直線異側(cè))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC中點(diǎn),又PA=AB=4,∠CDA=120°.
(1)求證:BD⊥PC;
(2)設(shè)E為PC的中點(diǎn),點(diǎn)F在線段AB上,若直線EF∥平面PAD,求AF的長;
(3)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式
3x2+2x+2
x2+x+1
≥m對于任意的實(shí)數(shù)x均成立,求自然數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點(diǎn).
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)點(diǎn)M在線段PC上,PM=
1
3
PC
,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,側(cè)棱與底面所成的角為α(0°<α<90°),點(diǎn)B1在底面上的射影D落在BC上.
(1)求證:AC⊥平面BB1C1C;
(2)當(dāng)α為何值時(shí),AB1⊥BC1,且使點(diǎn)D恰為BC中點(diǎn)?
(3)(理科做)當(dāng)α=arccos
1
3
,且AC=BC=AA1時(shí),求二面角C1-AB-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x+a
,若函數(shù)f(x)=2013x的圖象上存在點(diǎn)(x0,y0)使得f(f(y0))=y0,求a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面,給出下列四個(gè)命題:
①若m⊥α,n⊥α,則m⊥n;②若α∥β,β∥γ,m⊥α,則m⊥γ;
③若m∥α,n∥α,則m∥n;④若α⊥γ,β⊥γ,則α∥β.
其中正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案