【題目】已知橢圓:,,分別是橢圓短軸的上下兩個端點,是橢圓的左焦點,P是橢圓上異于點,的點,若的邊長為4的等邊三角形.
寫出橢圓的標準方程;
當直線的一個方向向量是時,求以為直徑的圓的標準方程;
設(shè)點R滿足:,,求證:與的面積之比為定值.
【答案】(1);(2);(3)證明見解析
【解析】
由是邊長為4的等邊三角形得,進一步求得,則橢圓方程可求;
由直線的一個方向向量是,可得直線所在直線的斜率,得到直線的方程,由橢圓方程聯(lián)立,求得P點坐標,得到的中點坐標,再求出,可得以為直徑的圓的半徑,則以為直徑的圓的標準方程可求;
方法一、設(shè),求出直線的斜率,進一步得到直線的斜率,得到直線的方程,同理求得直線的方程,聯(lián)立兩直線方程求得R的橫坐標,再結(jié)合在橢圓上可得與的關(guān)系,由求解;
方法二、設(shè)直線,的斜率為k,得直線的方程為結(jié)合,可得直線的方程為,把與橢圓方程聯(lián)立可得,再由在橢圓上,得到,從而得到,得結(jié)合,可得直線的方程為與線的方程聯(lián)立求得再由求解.
解:如圖,由的邊長為4的等邊三角形,得,且.
橢圓的標準方程為;
解:直線的一個方向向量是,
直線所在直線的斜率,則直線的方程為,
聯(lián)立,得,
解得,.
則的中點坐標為,.
則以為直徑的圓的半徑.
以為直徑的圓的標準方程為;
證明:方法一、設(shè),
直線的斜率為,由,得直線的斜率為.
于是直線的方程為:.
同理,的方程為:.
聯(lián)立兩直線方程,消去y,得.
在橢圓上,
,從而.
,
.
方法二、設(shè)直線,的斜率為k,,則直線的方程為.
由,直線的方程為,
將代入,得,
是橢圓上異于點,的點,,從而.
在橢圓上,
,從而.
,得.
,直線的方程為.
聯(lián)立,解得,即.
.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體中,四邊形是矩形,,,平面平面.
(1)若點是的中點,求證:平面;
(2)求證:平面平面;
(3)若,求直線與平面成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班隨機抽查了名學生的數(shù)學成績,分數(shù)制成如圖的莖葉圖,其中組學生每天學習數(shù)學時間不足個小時,組學生每天學習數(shù)學時間達到一個小時,學校規(guī)定分及分以上記為優(yōu)秀,分及分以上記為達標,分以下記為未達標.
(1)根據(jù)莖葉圖完成下面的列聯(lián)表:
達標 | 未達標 | 總計 | |
組 | |||
組 | |||
總計 |
(2)判斷是否有的把握認為“數(shù)學成績達標與否”與“每天學習數(shù)學時間能否達到一小時”有關(guān).
參考公式與臨界值表:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過年時小明的舅舅在家庭微信群里發(fā)了一個10元的紅包,紅包被隨機分配為2.51元,3.32元,1.24元,0.26元,2.67元,共五份.現(xiàn)已知小明與爸爸都各自搶到了一個紅包,則兩人搶到紅包的金額總和不小于4元的概率為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為鼓勵家;,與某手機通訊商合作,為教師辦理流量套餐.為了解該校教師手機流量使用情況,通過抽樣,得到位教師近年每人手機月平均使用流量(單位:)的數(shù)據(jù),其頻率分布直方圖如下:
若將每位教師的手機月平均使用流量分別視為其手機月使用流量,并將頻率為概率,回答以下問題.
(Ⅰ) 從該校教師中隨機抽取人,求這人中至多有人月使用流量不超過 的概率;
(Ⅱ) 現(xiàn)該通訊商推出三款流量套餐,詳情如下:
套餐名稱 | 月套餐費(單位:元) | 月套餐流量(單位:) |
這三款套餐都有如下附加條款:套餐費月初一次性收取,手機使用一旦超出套餐流量,系統(tǒng)就自動幫用戶充值 流量,資費元;如果又超出充值流量,系統(tǒng)就再次自動幫用戶充值 流量,資費元/次,依次類推,如果當月流量有剩余,系統(tǒng)將自動清零,無法轉(zhuǎn)入次月使用.
學校欲訂購其中一款流量套餐,為教師支付月套餐費,并承擔系統(tǒng)自動充值的流量資費的,其余部分由教師個人承擔,問學校訂購哪一款套餐最經(jīng)濟?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象過點,且在點處的切線與直線平行.
(1)求實數(shù),的值;
(2)若對任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一商家誠邀甲、乙兩名圍棋高手進行一場網(wǎng)絡(luò)國棋比賽,每比賽一局商家要向每名棋手支付2000元對局費,同時商家每局從轉(zhuǎn)讓網(wǎng)絡(luò)轉(zhuǎn)播權(quán)及廣告宣傳中獲利12100元,從兩名棋手以往比賽中得知,甲每局獲勝的概率為,乙每局獲勝的概率為,兩名棋手約定:最多下五局,先連勝兩局者獲勝,比賽結(jié)束,比賽結(jié)束后,商家為獲勝者頒發(fā)5000元的獎金,若沒有決出獲勝者則各頒發(fā)2500元.
(1)求下完五局且甲獲勝的概率是多少;
(2)求商家從這場網(wǎng)絡(luò)棋賽中獲得的收益的數(shù)學期望是多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com