7.《數(shù)書九章》三斜求積術(shù):“以小斜冪,并大斜冪,減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪,減上,余四約之,為實(shí);一為從隅,開平方得積”.秦九韶把三角形的三條邊分別稱為小斜,中斜和大斜,“術(shù)”即方法.以S,a,b,c分別表示三角形的面積,大斜,中斜,小斜,ha,hb,hc分別為對(duì)應(yīng)的大斜,中斜,小斜上的高,所以S=$\sqrt{\frac{1}{4}[{a}^{2}×^{2}-(\frac{{a}^{2}+^{2}-{c}^{2}}{2})^{2}]}$=$\frac{1}{2}$aha=$\frac{1}{2}$bhb=$\frac{1}{2}$chc.已知ha=3,hb=4,hc=6,根據(jù)上述公式,可以推理其對(duì)應(yīng)邊分別為( 。
A.$\frac{32\sqrt{15}}{15}$,$\frac{8\sqrt{15}}{5}$,$\frac{16\sqrt{15}}{15}$B.$\frac{32}{15}$,$\frac{8}{5}$,$\frac{16}{15}$
C.4,3,2D.8,6,4

分析 設(shè)該三角形的面積為S,a=$\frac{2S}{3}$,b=$\frac{S}{2}$,c=$\frac{S}{3}$,再代入面積公式解出S,進(jìn)而求得三邊之長(zhǎng).

解答 解:設(shè)該三角形的面積為S,則有:
S=$\frac{1}{2}$aha=$\frac{1}{2}$bhb=$\frac{1}{2}$chc,且ha=3,hb=4,hc=6,
所以,a=$\frac{2S}{3}$,b=$\frac{S}{2}$,c=$\frac{S}{3}$,
代入公式S=$\sqrt{\frac{1}{4}[{a}^{2}×^{2}-(\frac{{a}^{2}+^{2}-{c}^{2}}{2})^{2}]}$并平方得,
S2=$\frac{1}{4}$[$\frac{4S^2}{9}$•$\frac{S^2}{4}$-$\frac{1}{4}$•($\frac{4S^2}{9}$+$\frac{S^2}{4}$-$\frac{S^2}{9}$)2],
整理得,4S2=$\frac{S^4}{9}$-$\frac{49S^4}{24^2}$,
解得,S=$\frac{48}{\sqrt{15}}$=$\frac{16\sqrt{15}}{5}$,
所以,a=$\frac{2S}{3}$=$\frac{32\sqrt{15}}{15}$,b=$\frac{S}{2}$=$\frac{8\sqrt{15}}{5}$,c=$\frac{S}{3}$=$\frac{16\sqrt{15}}{15}$,
故選A.

點(diǎn)評(píng) 本題主要考查了應(yīng)用三角形的面積公式求三角形的三邊長(zhǎng),具有一定的運(yùn)算技巧,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn,${S_n}={n^2}-7n\;(n∈N*)$.
(1)求數(shù)列{an}通項(xiàng)公式,并證明{an}為等差數(shù)列.
(2)求當(dāng)n為多大時(shí),Sn取得最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若一個(gè)幾何體的三視圖都是圓,則這個(gè)幾何體一定是球.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,內(nèi)角A,B,C對(duì)應(yīng)的邊分別為a,b,c(a≤b≤c),且bcosC+ccosB=2asinA.
(Ⅰ)求角A;
(Ⅱ)求證:${a^2}≥(2-\sqrt{3})bc$;
(Ⅲ)若a=b,且BC邊上的中線AM長(zhǎng)為$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.對(duì)于實(shí)數(shù)a,b,c,給出下列命題:
①若a>b,則ac2>bc2;
②若0>a>b,則$\frac{1}{a}<\frac{1}$;
③若a>b,$\frac{1}{a}<\frac{1}$,則a>0,b<0;
④若a>b>c>0,則$\frac{a}{a+c}>\frac{b+c}$.其中真命題的個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知四棱錐S-ABCD中,底面ABCD是直角梯形,∠ABC=90°,AD∥BC,SA=AB=BC=2,AD=1,SA⊥底面ABCD.
(1)求四棱錐S-ABCD的體積;
(2)(理)求SC與平面SAB所成角的大小
(文)求異面直線SC與AD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)直線3x-4y+5=0的傾斜角為α,則sinα=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.?dāng)?shù)列{an}中,a1=2,a2=1,且$\frac{1}{a_n}+\frac{1}{{{a_{n+2}}}}=\frac{2}{{{a_{n+1}}}}$(n∈N*),則a6等于( 。
A.-3B.-$\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,若sinA:sinB:sinC=3:4:6,則cosC=( 。
A.$\frac{11}{24}$B.$\frac{13}{24}$C.-$\frac{13}{24}$D.-$\frac{11}{24}$

查看答案和解析>>

同步練習(xí)冊(cè)答案