A. | $\frac{32\sqrt{15}}{15}$,$\frac{8\sqrt{15}}{5}$,$\frac{16\sqrt{15}}{15}$ | B. | $\frac{32}{15}$,$\frac{8}{5}$,$\frac{16}{15}$ | ||
C. | 4,3,2 | D. | 8,6,4 |
分析 設(shè)該三角形的面積為S,a=$\frac{2S}{3}$,b=$\frac{S}{2}$,c=$\frac{S}{3}$,再代入面積公式解出S,進(jìn)而求得三邊之長(zhǎng).
解答 解:設(shè)該三角形的面積為S,則有:
S=$\frac{1}{2}$aha=$\frac{1}{2}$bhb=$\frac{1}{2}$chc,且ha=3,hb=4,hc=6,
所以,a=$\frac{2S}{3}$,b=$\frac{S}{2}$,c=$\frac{S}{3}$,
代入公式S=$\sqrt{\frac{1}{4}[{a}^{2}×^{2}-(\frac{{a}^{2}+^{2}-{c}^{2}}{2})^{2}]}$并平方得,
S2=$\frac{1}{4}$[$\frac{4S^2}{9}$•$\frac{S^2}{4}$-$\frac{1}{4}$•($\frac{4S^2}{9}$+$\frac{S^2}{4}$-$\frac{S^2}{9}$)2],
整理得,4S2=$\frac{S^4}{9}$-$\frac{49S^4}{24^2}$,
解得,S=$\frac{48}{\sqrt{15}}$=$\frac{16\sqrt{15}}{5}$,
所以,a=$\frac{2S}{3}$=$\frac{32\sqrt{15}}{15}$,b=$\frac{S}{2}$=$\frac{8\sqrt{15}}{5}$,c=$\frac{S}{3}$=$\frac{16\sqrt{15}}{15}$,
故選A.
點(diǎn)評(píng) 本題主要考查了應(yīng)用三角形的面積公式求三角形的三邊長(zhǎng),具有一定的運(yùn)算技巧,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | -$\frac{1}{3}$ | C. | 3 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{11}{24}$ | B. | $\frac{13}{24}$ | C. | -$\frac{13}{24}$ | D. | -$\frac{11}{24}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com