精英家教網 > 高中數學 > 題目詳情
(10分) 已知:如圖,設P為橢圓上的任意一點,過點P作橢圓的切線,交準線m于點Z,此時FZ⊥FP,過點P作PZ的垂線交橢圓的長軸于點G,橢圓的離心率為e,求證:FG=e·FP

練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

中心在坐標原點,焦點在x軸上的橢圓,它的離心率為,與直線x+y-1=0相交于兩點M、N,且OM⊥ON.求橢圓的方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(14分)若橢圓的離心率等于,拋物線的焦點在橢圓的頂點上。
(1)求拋物線的方程;
(2)求過點的直線與拋物線、兩點,又過作拋物線的切線、,當時,求直線的方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題共14分)
已知橢圓短軸的一個端點,離心率.過作直線與橢圓交于另一點,與軸交于點(不同于原點),點關于軸的對稱點為,直線軸于點
(Ⅰ)求橢圓的方程;
(Ⅱ)求 的值.
  

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設中心在原點的橢圓離心率為e,左、右兩焦點分別為F1、F2,拋物線F2為焦點,點P為拋物線和橢圓的一個交點,若PF2x軸成45°,則e的值為    ▲    

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知正方形,則以為焦點,且過兩點的橢圓的離心率為______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓的兩焦點為,現(xiàn)將坐標平面沿軸折成二面角,二面角的度數為,已知折起后兩焦點的距離,則滿足題設的一組數值:              (只需寫出一組就可以,不必寫出所有情況)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓的參數方程是 (為參數),則它的離心率為       

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

分別為橢圓的左右焦點,過的直線與橢圓相交于,兩點,直線的傾斜角為,到直線的距離為。
(Ⅰ)求橢圓的焦距;
(Ⅱ)如果,求橢圓的方程。

查看答案和解析>>

同步練習冊答案