【題目】已知一列非零向量滿足:(其中是非零常數(shù)).
(1)求數(shù)列的通項公式;
(2)求向量與夾角的弧度數(shù)
(3)當時,把中所有與共線的向量按原來的順序排成一列,記為令為坐標原點,求點列的極限點D的坐標.(注:若點坐標為且則稱點D為點列的極限點).
【答案】(1) ;(2) 當時,;當時,; (3) .
【解析】
(1)根據(jù)向量模長公式可得數(shù)列的遞推關(guān)系式,結(jié)合等比數(shù)列的定義可求;
(2)先求解,結(jié)合向量的夾角公式可得夾角;
(3)先根據(jù)題意求解數(shù)列的通項公式,從而可得,結(jié)合極限知識可求解極限點D的坐標.
(1)因為,
所以
.
所以,即為等比數(shù)列.
因為,所以,所以.
(2) ,
所以;
當時,;當時,.
(3)由(2)知時,,所以每隔3個向量的兩個向量必共線,且方向相反,
所以與共線的向量為,
設(shè)的單位向量為,則,
所以,
所以,,
同理可求,故點列的極限點D的坐標為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中, , , 為的中點, 為的中點,且為正三角形.
(1)求證: 平面;
(2)若,三棱錐的體積為1,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系.直線的極坐標方程為.
(1)求曲線的極坐標方程與直線的直角坐標方程;
(2)已知直線與曲線交于兩點,與軸交于點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C的頂點在原點,對稱軸是y軸,直線與拋物線交于不同的兩點、,線段中點的縱坐標為2,且.
(1)求拋物線的標準方程;
(2)設(shè)拋物線的焦點為,若直線經(jīng)過焦點,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)滿足,的虛部為2,
(1)求復(fù)數(shù);
(2)設(shè)在復(fù)平面上對應(yīng)點分別為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線-=1(a>0,b>0)的離心率為2,焦點到漸近線的距離等于,過右焦點F2的直線l交雙曲線于A,B兩點,F1為左焦點.
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點和非零實數(shù),若兩條不同的直線、均過點,且斜率之積為,則稱直線、是一組“共軛線對”,如直線和是一組“共軛線對”,其中是坐標原點.
(1)已知、是一組“共軛線對”,且知直線,求直線的方程;
(2)如圖,已知點、點和點分別是三條傾斜角為銳角的直線、、上的點(、、與、、均不重合),且直線、是“共軛線對”,直線、是“共軛線對”,直線、是“共軛線對”,求點的坐標;
(3)已知點,直線、是“共軛線對”,當的斜率變化時,求原點到直線、的距離之積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).其中
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)若對于任意,都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面,垂直于和,為棱上的點,.
(1)若為棱的中點,求證:平面;
(2)當時,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com