已知直線l:y=2x+1和圓C:x2+y2=4,
(1)試判斷直線和圓的位置關系.
(2)求過點P(-1,2)且與圓C相切的直線的方程.
分析:(1)根據(jù)圓的標準方程,找出圓心C的坐標和半徑r,利用點到直線的距離公式求出圓心C到直線l的距離d,判定d與r的大小即可確定出直線l與圓C的位置關系;
(2)設過點P(-1,2)且與圓C相切的直線的方程為x=-1時,不合題意舍去;設過點P(-1,2)且與圓C相切的直線的方程的斜率為k,得出切線方程為kx-y+k+2=0,利用圓心到直線的距離等于半徑列出關于k的方程,求出k值,從而得出切線方程.
解答:解:(1)因為x2+y2=4,
所以圓心為(0,0),半徑r=2.
又因為y=2x+1,
所以圓心到直線的距離為d=
|2×0-0+1|
22+12
=
5
5
<2=r.
所以直線與圓相交.
(2)設過點P(-1,2)且與圓C相切的直線的方程為x=-1時,不合題意舍去
設過點P(-1,2)且與圓C相切的直線的方程的斜率為k,
則切線方程為kx-y+k+2=0,
|k+2|
1+k2
=2
,
化簡得3k2-4k=0
解得k=0或k=
4
3

所以切線方程為y=0或4x-3y+10=0
點評:此題考查了直線與圓的位置關系,要求學生掌握點到直線的距離公式.圓心到直線的距離為d,圓的半徑為r,當d>r時,直線與圓的位置關系為相離;當d=r時,直線與圓相切;當d<r時,直線與圓相交.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l:y=2x-2,圓C:x2+y2+2x+4y+1=0,請判斷直線l與圓C的位置關系,若相交,則求直線l被圓C所截的線段長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=2x+m和橢圓C:
x2
4
+y2=1

(1)m為何值時,l和C相交、相切、相離;
(2)m為何值時,l被C所截線段長為
20
17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
12
x2+lnx
(1)求f(x)在區(qū)間[1,e]上的最大值與最小值;
(2)已知直線l:y=2x+a與函數(shù)f(x)的圖象相切,求切點的坐標及a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=2x-
3
與橢圓C:
x2
a2
+y2=1  (a>1)
交于P,Q兩點.
(1)設PQ中點M(x0,y0),求證:x0 <
3
2

(2)橢圓C的右頂點為A,且A在以PQ為直徑的圓上,求△OPQ的面積(O為坐標原點).

查看答案和解析>>

同步練習冊答案