【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中點(diǎn).

(I)求證:EM⊥AD;
(II)求二面角A﹣BE﹣C的余弦值;
(III)在線段EC上是否存在點(diǎn)P,使得直線AP與平面ABE所成的角為45°,若存在,求出 的值;若不存在,說(shuō)明理由.

【答案】(Ⅰ)證明:∵EA=EB,M是AB的中點(diǎn),∴EM⊥AB,
∵平面ABE⊥平面ABCD,
平面ABE∩平面ABCD=AB,EA平面ABE,
∴EM⊥平面ABCD,AD平面ABCD,
∴EM⊥AD.
(Ⅱ)解:∵EM⊥平面ABCD,∴EM⊥MC,∵△ABC是正三角形,
∴MC⊥AB.∴MB、MC、ME兩兩垂直.
建立如圖所示空間直角坐標(biāo)系M﹣xyz.

則M(0,0,0),A(﹣1,0,0),B(1,0,0),C(0, ,0),E(0,0, ),
=(﹣1, ,0), =(﹣1,0, ),
設(shè) =(x,y,z)是平面BCE的一個(gè)法向量,
,
令z=1,得 =( ),
∵y軸與平面ABE垂直,∴ =(0,1,0)是平面ABE的一個(gè)法向量.
cos< >= = = ,
∴二面角A﹣BE﹣C的余弦值為
(III)假設(shè)在線段EC上存在點(diǎn)P,使得直線AP與平面ABE所成的角為45°.
=(1,0, ), =(0, ),
設(shè) = =(0 ,﹣ ),(00≤λ≤1),
= ,
∵直線AP與平面ABE所成的角為45°,
∴sin45°=|cos< >|= = = ,
由0≤λ≤1,解得
∴在線段EC上存在點(diǎn)P,使得直線AP與平面ABE所成的角為45°,且 =
【解析】(Ⅰ)推導(dǎo)出EM⊥AB,從而EM⊥平面ABCD,由此能證明EM⊥AD.(Ⅱ)推導(dǎo)出EM⊥MC,MC⊥AB,從而MB、MC、ME兩兩垂直,建立空間直角坐標(biāo)系M﹣xyz,利用向量法能求出二面角A﹣BE﹣C的余弦值.(III)求出 和平面ABE的法向量,利用向量法能示出在線段EC上存在點(diǎn)P,使得直線AP與平面ABE所成的角為45°,且 =
【考點(diǎn)精析】本題主要考查了空間角的異面直線所成的角的相關(guān)知識(shí)點(diǎn),需要掌握已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,且平面 平面, 中點(diǎn), .

(Ⅰ)求證:平面平面;

(Ⅱ)若二面角的平面角大小滿足,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是公比為正數(shù)的等比數(shù)列, .

(1)求的通項(xiàng)公式;

(2)設(shè)是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PD垂直正方形ABCD所在平面,AB2,EPB的中點(diǎn), , >

1)建立適當(dāng)?shù)目臻g坐標(biāo)系,求出點(diǎn)E的坐標(biāo);

2)在平面PAD內(nèi)求一點(diǎn)F,使EF⊥平面PCB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】春節(jié)期間,受煙花爆竹集中燃放影響,我國(guó)多數(shù)城市空氣中PM2.5濃度快速上升,特別是在大氣擴(kuò)散條件不利的情況下,空氣質(zhì)量在短時(shí)間內(nèi)會(huì)迅速惡化.2017年除夕18時(shí)和初一2時(shí),國(guó)家環(huán)保部門(mén)對(duì)8個(gè)城市空氣中PM2.5濃度監(jiān)測(cè)的數(shù)據(jù)如表(單位:微克/立方米).

除夕18時(shí)PM2.5濃度

初一2時(shí)PM2.5濃度

北京

75

647

天津

66

400

石家莊

89

375

廊坊

102

399

太原

46

115

上海

16

17

南京

35

44

杭州

131

39

(Ⅰ)求這8個(gè)城市除夕18時(shí)空氣中PM2.5濃度的平均值;
(Ⅱ)環(huán)保部門(mén)發(fā)現(xiàn):除夕18時(shí)到初一2時(shí)空氣中PM2.5濃度上升不超過(guò)100的城市都是“禁止燃放煙花爆竹“的城市,濃度上升超過(guò)100的城市都未禁止燃放煙花爆竹.從以上8個(gè)城市中隨機(jī)選取3個(gè)城市組織專家進(jìn)行調(diào)研,記選到“禁止燃放煙花爆竹”的城市個(gè)數(shù)為X,求隨機(jī)變量y的分布列和數(shù)學(xué)期望;
(Ⅲ)記2017年除夕18時(shí)和初一2時(shí)以上8個(gè)城市空氣中PM2.5濃度的方差分別為s12和s22 , 比較s12和s22的大小關(guān)系(只需寫(xiě)出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn . 若對(duì)n∈N* , 總k∈N* , 使得Sn=ak , 則稱數(shù)列{an}是“G數(shù)列”. (Ⅰ)若數(shù)列{an}是等差數(shù)列,其首項(xiàng)a1=1,公差d=﹣1.證明:數(shù)列{an}是“G數(shù)列”;
(Ⅱ)若數(shù)列{an}的前n項(xiàng)和Sn=3n(n∈N*),判斷數(shù)列{an}是否為“G數(shù)列”,并說(shuō)明理由;
(Ⅲ)證明:對(duì)任意的等差數(shù)列{an},總存在兩個(gè)“G數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知MOD函數(shù)是一個(gè)求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個(gè)算法的程序框圖,若輸入m的值為48時(shí),則輸出i的值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=ex+acosx(e為自然對(duì)數(shù)的底數(shù)).
(1)若f(x)在x=0處的切線過(guò)點(diǎn)P(1,6),求實(shí)數(shù)a的值;
(2)當(dāng)x∈[0, ]時(shí),f(x)≥ax恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年,在國(guó)家創(chuàng)新驅(qū)動(dòng)戰(zhàn)略下,北斗系統(tǒng)作為一項(xiàng)國(guó)家高科技工程,一個(gè)開(kāi)放型的創(chuàng)新平臺(tái),1400多個(gè)北斗基站遍布全國(guó),上萬(wàn)臺(tái)套設(shè)備組成星地“一張網(wǎng)”,國(guó)內(nèi)定位精度全部達(dá)到亞米級(jí),部分地區(qū)達(dá)到分米級(jí),最高精度甚至可以達(dá)到厘米或毫米級(jí)。最近北斗三號(hào)工程耗資9萬(wàn)元建成一小型設(shè)備,已知這臺(tái)設(shè)備從啟用的第一天起連續(xù)使用,第天的維修保養(yǎng)費(fèi)為元,使用它直至“報(bào)廢最合算”(所謂“報(bào)廢最合算”是指使用這臺(tái)儀器的平均每天耗資最少)為止,一共使用了多少天,平均每天耗資多少錢?

查看答案和解析>>

同步練習(xí)冊(cè)答案