【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,且平面 平面, 為中點(diǎn), .
(Ⅰ)求證:平面平面;
(Ⅱ)若二面角的平面角大小滿足,求四棱錐的體積.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ) .
【解析】試題分析:(Ⅰ)由正三角形性質(zhì)可得,再利用面面垂直的性質(zhì)定理得平面,從而,則 ,由線面垂直的判定定理以及面面垂直的判定定理可得平面;(Ⅱ)建立空間直角坐標(biāo)系,令,求出平面的法向量以及平面的法向量,根據(jù)二面角的平面角大余弦值列方程求出,利用棱錐的體積公式可得結(jié)果.
試題解析:(Ⅰ)取中點(diǎn)為, 中點(diǎn)為,
由側(cè)面為正三角形,且平面平面知平面,故,
又,則平面,所以,
又,則,又是中點(diǎn),則,
由線面垂直的判定定理知平面,
又平面,故平面平面.
(Ⅱ)
如圖所示,建立空間直角坐標(biāo)系,
令,則.
由(Ⅰ)知為平面的法向量,
令為平面的法向量,
由于均與垂直,
故即解得
故,由 ,解得.
故四棱錐的體積.
【方法點(diǎn)晴】本題主要考查面面垂直的判定定理、利用空間向量求二面角以及棱錐的體積公式,屬于難題.空間向量解答立體幾何問(wèn)題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫(xiě)出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列命題:
①意味著每增加一個(gè)單位,平均增加8個(gè)單位
②投擲一顆骰子實(shí)驗(yàn),有擲出的點(diǎn)數(shù)為奇數(shù)和擲出的點(diǎn)數(shù)為偶數(shù)兩個(gè)基本事件
③互斥事件不一定是對(duì)立事件,但對(duì)立事件一定是互斥事件
④在適宜的條件下種下一顆種子,觀察它是否發(fā)芽,這個(gè)實(shí)驗(yàn)為古典概型
其中正確的命題有__________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 ,過(guò)點(diǎn)P(3,6)的直線l與C相交于A,B兩點(diǎn),且AB的中點(diǎn)為N(12,15),則雙曲線C的離心率為( )
A.2
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:
1證明直線l經(jīng)過(guò)定點(diǎn)并求此點(diǎn)的坐標(biāo);
2若直線l不經(jīng)過(guò)第四象限,求k的取值范圍;
3若直線l交x軸負(fù)半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,O為坐標(biāo)原點(diǎn),設(shè)的面積為S,求S的最小值及此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若從, , , 四個(gè)數(shù)中任取的一個(gè)數(shù), 是從, , 三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;
(2)若是從區(qū)間上任取的一個(gè)數(shù), 是從區(qū)間上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax+a(a∈R),其中e為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)y=f(x)的單調(diào)性;
(2)函數(shù)y=f(x)的圖象與x軸交于A(x1 , 0),B(x2 , 0)兩點(diǎn),x1<x2 , 點(diǎn)C在函數(shù)y=f(x)的圖象上,且△ABC為等腰直角三角形,記 ,求at﹣(a+t)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高二丈,問(wèn):積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹腻涹w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問(wèn):它的體積是多少?”已知1丈為10尺,該鍥體的三視圖如圖所示,則該鍥體的體積為( )
A.10000立方尺
B.11000立方尺
C.12000立方尺
D.13000立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中點(diǎn).
(I)求證:EM⊥AD;
(II)求二面角A﹣BE﹣C的余弦值;
(III)在線段EC上是否存在點(diǎn)P,使得直線AP與平面ABE所成的角為45°,若存在,求出 的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com