已知過點(0,1)的直線l與曲線C交于兩個不同點MN。求曲線C在點MN處切線的交點軌跡。
P的軌跡為(2,2),(2,2.5)兩點間的線段(不含端點)。
設點M、N的坐標分別為(x1,y1)和(x2,y2),曲線C在點M、N處的切線分別為l1l2,其交點P的坐標為(xp,yp)。若直線l的斜率為k,則l的方程為y=kx+1。
由方程組,消去y,得,即。由題意知,該方程在(0,+∞)上有兩個相異的實根x1、x2,故k≠1,且…(1),…(2),…(3),由此解得。對求導,得,則,,于是直線l1的方程為,
,化簡后得到直線l1的方程為…(4)。同理可求得直線l2的方程為…(5)。(4)-(5)得,因為x1x2,故有…(6)。將(2)(3)兩式代入(6)式得xp=2。(4)+(5)得…(7),其中,,代入(7)式得,而xp=2,得。又由,即點P的軌跡為(2,2),(2,2.5)兩點間的線段(不含端點)。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的頂點在原點,焦點為圓的圓心
(1)求此拋物線方程;
(2)如圖,是否存在過圓心的直線與拋物線、圓順次交于且使得成等差數(shù)列,若存在,求出它的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

的半徑為的定圓的兩互相垂直的直徑,作動弦,引,且交,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

曲線處的切線是否存在,若存在,求出切線的斜率和切線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,試討論當的值變化時,方程表示的曲線形狀.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知點,所成的比為2,是平面上一動點,且滿足.(1)求點的軌跡對應的方程;(2) 已知點在曲線上,過點作曲線的兩條弦,且直線的斜率滿足,試推斷:動直線有何變化規(guī)律,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知⊙Q:(x-1)2+y2=16,動⊙M過定點P(-1,0)且與⊙Q相切,則M點的軌跡方程是:                    

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若拋物線的焦點與雙曲線的右焦點重合,則的值為          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線與橢圓有共同的焦點,點是雙曲線的漸近線與橢圓的一個交點,求雙曲線與橢圓的方程。

查看答案和解析>>

同步練習冊答案