已知tanα=-2,且
π
2
<α<π,則cosα+sinα=
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:由tanα的值及α的范圍,利用同角三角函數(shù)間的基本關(guān)系求出sinα與cosα的值,代入原式計(jì)算即可得到結(jié)果.
解答: 解:∵tanα=-2,且
π
2
<α<π,
∴cosα=-
1
1+tan2α
=-
5
5
,sinα=
1-cos2α
=
2
5
5
,
∴cosα+sinα=-
5
5
+
2
5
5
=
5
5

故答案為:
5
5
點(diǎn)評:此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x2+2x+3,
(1)求f(0)的值;
(2)若函數(shù)g(x)滿足g(x-1)=
x+1
x2+1
,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)采取分層抽樣的方法從應(yīng)屆高三學(xué)生中按照性別抽取20名學(xué)生,其中8名女生中有3名報(bào)考理科,男生中有2名報(bào)考文科.
(1)是根據(jù)以上信息,寫出2×2列聯(lián)表
(2)用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為該中學(xué)的高三學(xué)生選報(bào)文理科與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
a
x
,其中常數(shù)a>0
(1)證明:函數(shù)f(x)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù);
(2)利用(1)的結(jié)論,求函數(shù)y=x+
20
x
(x∈[4,6])的值域;
(3)借助(1)的結(jié)論,試指出函數(shù)g(x)=
-7x
x2
+x+1(x>0)
的單調(diào)區(qū)間,不必證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)y=sin4x+cos4x周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠A=60°,BC=
3
,則AB+2AC的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β∈(0,π),且tan(α-β)=
1
2
,tanβ=-
1
7
,2α-β=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=2x2-(2m+1)x-m2的定義域?yàn)镽,且在區(qū)間[-1,+∞)上是單調(diào)增函數(shù),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),g(x)是定義在R上的偶函數(shù),且f(x)-g(x)=-x3-x2+1.則g(x)=
 

查看答案和解析>>

同步練習(xí)冊答案