等比數(shù)列{an}的前n項和為Sn,若a1+a2+a3=3,a4+a5+a6=6,則S12=( 。
A、15B、30C、45D、60
考點:等比數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:等比數(shù)列{an}中,Sm,S2m-Sm,S3m-S2m也成等比數(shù)列,由此利用已知條件能求出S12
解答: 解:等比數(shù)列{an}中,
∵a1+a2+a3=3,a4+a5+a6=6,
∴a7+a8+a9=2×6=12,
a10+a11+a12=2×12=24,
∴S12=3+6+12+24=45.
故答案為:45.
點評:本題考查等比數(shù)列的前12項的和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若對數(shù)函數(shù)y=logax在(0,+∞)上是減函數(shù),那么(  )
A、0<a<1B、-1<a<0
C、a=-1D、a<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個條件中,使a>b成立的充分而不必要的條件是( 。
A、a2>b2
B、a3>b3
C、a>b+1
D、a>b-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x∈R,使得x+
1
x
<2,命題q:?x∈R,x2+x+1>0,下列命題為真的是( 。
A、p∧q
B、(¬p)∧q
C、p∧(¬q)
D、(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且f(x)=x2+2x•f′(1),則f′(1)=( 。
A、0B、-4C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線L1過點A(m,1)和點B(-1,m),直線L2過點C(m+n,n+1)和點D(n+1,n-m).則直線L1與L2的位置關(guān)系是(  )
A、重合B、平行
C、垂直D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“直線l與平面α內(nèi)無數(shù)條直線都垂直”是“直線l與平面α垂直”的( 。l件.
A、必要非充分
B、充分非必要
C、充要
D、既非充分又非必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a,b,則a+b>0是a>0且b>0的( 。l件.
A、充分不必要
B、必要不充分
C、充要
D、既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD為正方形,EA⊥平面ABCD,EF∥AB,AB=4,AE=2,EF=1.
(Ⅰ)若點M在線段AC上,且滿足CM=
1
4
CA
,求證:EM∥平面FBC;
(Ⅱ)求證:AF⊥平面EBC;
(Ⅲ)求二面角A-FB-D的余弦值.

查看答案和解析>>

同步練習(xí)冊答案