【題目】已知函數(shù).
(I)求,的值;
(II)求;
(III)若,求.
【答案】(I),-11 ; (II)f(8x﹣1)=;(III)或
【解析】
(I)根據(jù)函數(shù)的解析式依次求值即可;(II)根據(jù)解析式對8x﹣1分三種情況依次求出,最后再用分段函數(shù)的形式表示出f(8x﹣1);(III)根據(jù)解析式對4a分三種情況,分別由條件列出方程求出a的值.
(I)由題意得,f(1+)=f(2+)=1+
=1+ ,
又f(﹣4)=﹣8+3=-5,則f(-5)=-10+3=-7,f(-7)=-14+3=-11,
所以;
(II)當(dāng)8x﹣1>1即x>時,f(8x﹣1)=1+,
當(dāng)﹣1≤8x﹣1≤1即0≤x≤時,f(8x﹣1)=(8x﹣1)2+1=64x2﹣16x+2,
當(dāng)8x﹣1<﹣1即x<0時,f(8x﹣1)=2(8x﹣1)+3=16x+1,
綜上可得,f(8x﹣1)= ;
(III)因為,所以分以下三種情況:
當(dāng)4a>1時,即a>時,f(4a)==,解得a=,成立,
當(dāng)﹣1≤4a≤1時,即-≤a≤時,f(4a)=16a2+1=,解得a=,成立
當(dāng)4a<﹣1時,即a<-時,f(4a)=8a+3=,解得a=-,不成立,
綜上可得,a的值是或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的短軸長為2,過上頂點(diǎn)E和右焦點(diǎn)F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l過點(diǎn)(1,0),且與橢圓C交于點(diǎn)A,B,則在x軸上是否存在一點(diǎn)T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標(biāo)原點(diǎn)),若存在,求出 t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若偶函數(shù)f(x)在(﹣∞,0]上單調(diào)遞減,a=f(log23),b=f(log45),c=f(2 ),則a,b,c滿足( )
A.a<b<c
B.b<a<c
C.c<a<b
D.c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,P點(diǎn)的極坐標(biāo)為(3, ).曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)).
(Ⅰ)寫出點(diǎn)P的直角坐標(biāo)及曲線C的直角坐標(biāo)方程;
(Ⅱ)若Q為曲線C上的動點(diǎn),求PQ的中點(diǎn)M到直線l:2ρcosθ+4ρsinθ= 的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項公式an;
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,直線l:y=x+2與以原點(diǎn)為圓心、橢圓C的短半軸為半徑的圓O相切.
(1)求橢圓C的方程;
(2)過橢圓C的左頂點(diǎn)A作直線m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形,求直線m的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人們生活水平的不斷提高,人們對餐飲服務(wù)行業(yè)的要求也越來越高,由于工作繁忙無法抽出時間來享受美味,這樣網(wǎng)上外賣訂餐應(yīng)運(yùn)而生.若某商家的一款外賣便當(dāng)每月的銷售量(單位:千盒)與銷售價格(單位:元/盒)滿足關(guān)系式其中,為常數(shù),已知銷售價格為14元/盒時,每月可售出21千盒.
(1)求的值;
(2)假設(shè)該款便當(dāng)?shù)氖澄锊牧、員工工資、外賣配送費(fèi)等所有成本折合為每盒12元(只考慮銷售出的便當(dāng)盒數(shù)),試確定銷售價格的值,使該店每月銷售便當(dāng)所獲得的利潤最大.(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的各項均為正數(shù),a1=1,前n項和為Sn.數(shù)列{bn}為等比數(shù)列,b1=1,且b2S2=6,b2+S3=8.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,點(diǎn)(an , an+1)在直線y=x+2上,且首項a1是方程3x2﹣4x+1=0的整數(shù)解.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{an}的前n項和為Sn , 等比數(shù)列{bn}中,b1=a1 , b2=a2 , 數(shù)列{bn}的前n項和為Tn , 當(dāng)Tn≤Sn時,請直接寫出n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com