【題目】已知?jiǎng)訄A 過定點(diǎn) ,且在定圓 的內(nèi)部與其相內(nèi)切.
(1)求動(dòng)圓圓心 的軌跡方程 ;
(2)直線 與 交于 兩點(diǎn),與圓 交于 兩點(diǎn),求 的值.
【答案】
(1)解:如圖所示,
設(shè)動(dòng)圓 和定圓 內(nèi)切于點(diǎn) .動(dòng)點(diǎn) 到兩定點(diǎn),即定點(diǎn) 和定圓圓心 距離之和恰好等于定圓半徑,
即 ,
故答案為:點(diǎn) 的軌跡 是以 為兩焦點(diǎn),半長(zhǎng)軸為2,半短軸長(zhǎng)為 的橢圓: .
(2)解:將 代入 得, ,
所以 ,又由垂徑定理得,
.
故答案為: .
【解析】(1)由圓的切線的性質(zhì)結(jié)合橢圓的定義求軌跡方程;
(2)將直線方程與橢圓方程聯(lián)立,消去y得關(guān)于x的一元二次方程,由弦長(zhǎng)公式求|CD|和|GH|,得結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 .
(Ⅰ)對(duì)一切 恒成立,求實(shí)數(shù) 的取值范圍;
(Ⅱ)證明:對(duì)一切 ,都有 成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列中,若對(duì)任意都有(為常數(shù))成立,則稱為“等差比數(shù)列”,下面對(duì)“等差比數(shù)列” 的判斷:①不可能為;②等差數(shù)列一定是等差比數(shù)列; ③等比數(shù)列一定是等差比數(shù)列 ;④通項(xiàng)公式為(其中,且,)的數(shù)列一定是等差比數(shù)列,其中正確的判斷是( )
A. ①③④ B. ②③④ C. ①④ D. ①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)P(x,y)(其中y )到x軸的距離比它到點(diǎn)F(0,1)的距離少1.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)若直線l:x-y+1=0與動(dòng)點(diǎn)P的軌跡交于A、B兩點(diǎn),求△OAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和Sn,且滿足a3·a5=112,a1+a7=22.
(1)求等差數(shù)列{an}的第七項(xiàng)a7和通項(xiàng)公式an;
(2)若數(shù)列{bn}的通項(xiàng)bn=an+an+1,{bn}的前n項(xiàng)和Sn,寫出使得Sn小于55時(shí)所有可能的bn的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn) 為坐標(biāo)原點(diǎn), 是橢圓 上的兩個(gè)動(dòng)點(diǎn),滿足直線 與直線 關(guān)于直線 對(duì)稱.
(1)證明直線 的斜率為定值,并求出這個(gè)定值;
(2)求 的面積最大時(shí)直線 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列 中, ,其前 項(xiàng)和為 ,等比數(shù)列 的各項(xiàng)均為正數(shù), ,公比為 ,且 , .
(Ⅰ)求 與 .
(Ⅱ)設(shè)數(shù)列 滿足 ,求 的前 項(xiàng)和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各個(gè)說法正確的是( )
A. 終邊相同的角都相等 B. 鈍角是第二象限的角
C. 第一象限的角是銳角 D. 第四象限的角是負(fù)角
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com