【題目】數(shù)列中,若對任意都有為常數(shù))成立,則稱為“等差比數(shù)列”,下面對“等差比數(shù)列” 的判斷:①不可能為;②等差數(shù)列一定是等差比數(shù)列; ③等比數(shù)列一定是等差比數(shù)列 ;④通項公式為(其中,且,)的數(shù)列一定是等差比數(shù)列,其中正確的判斷是( )

A. ①③④ B. ②③④ C. ①④ D. ①③

【答案】C

【解析】分析:當時,則數(shù)列成了常數(shù)列,則分母也為0,進而推斷出,得出①是正確的,當?shù)炔顢?shù)列和等比數(shù)列為常數(shù)列時不滿足題設條件,排除②③,把④的通項公式代入題設中,滿足條件,進而推斷④是正確的.

詳解:對于①中,若時,則分母也為0,所以,得出①是正確;

當當?shù)炔顢?shù)列和等比數(shù)列為常數(shù)列時不滿足題設條件,排除②③,

對于④中,把代入結果為(常數(shù)),所以是正確的,

綜上所述,正確的命題為①④,故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知平行四邊形 的三個頂點坐標為 , .
(Ⅰ)求頂點 的坐標;
(Ⅱ)求四邊形 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足 ,它的前項和為,且,

(Ⅰ)求

(Ⅱ)已知等比數(shù)列滿足, ,設數(shù)列的前項和為,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 的方程為 ,直線 的方程為 ,點 在直線 上,過點 作圓 的切線 ,切點為 .
(1)若點 的坐標為 ,求切線 的方程;
(2)求四邊形 面積的最小值;
(3)求證:經(jīng)過 三點的圓必過定點,并求出所有定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分別求適合下列條件的橢圓的標準方程.
(1)焦點在坐標軸上,且經(jīng)過點A ( ,-2),B(-2 ,1);
(2)與橢圓 有相同焦點且經(jīng)過點M( ,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為調查高一、高二學生周日在家學習用時情況,隨機抽取了高一、高二各人,對他們的學習時間進行了統(tǒng)計,分別得到了高一學生學習時間(單位:小時)的頻數(shù)分布表和高二學生學習時間的頻率分布直方圖.

高一學生學習時間的頻數(shù)分布表(學習時間均在區(qū)間內):

學習時間

頻數(shù)

3

1

8

4

2

2

高二學生學習時間的頻率分布直方圖:

(1)求高二學生學習時間的頻率分布直方圖中的,并根據(jù)此頻率分布直方圖估計該校高二學生學習時間的中位數(shù)

(2)利用分層抽樣的方法,從高一學生學習時間在的兩組里隨機抽取,再從這人中隨機抽取,求學習時間在這一組中至少有人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場經(jīng)營某種商品,在某周內獲純利(元)與該周每天銷售這種商品數(shù)之間的一組數(shù)據(jù)關系如表:

(I)畫出散點圖;

(II)求純利與每天銷售件數(shù)之間的回歸直線方程;

(III)估計當每天銷售的件數(shù)為12件時,每周內獲得的純利為多少?

附注:

,,,,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓 過定點 ,且在定圓 的內部與其相內切.
(1)求動圓圓心 的軌跡方程 ;
(2)直線 交于 兩點,與圓 交于 兩點,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 的焦點為 ,其準線與 軸交于點 ,過 作斜率為 的直線 與拋物線交于 兩點,弦 的中點為 的垂直平分線與 軸交于
(1)求 的取值范圍;
(2)求證: .

查看答案和解析>>

同步練習冊答案