現(xiàn)有8名記者赴巴西參加“世界杯”賽事報(bào)道,其中記者A1,A2,A3通曉日語,B1,B2,B3通曉俄語,C1,C2通曉韓語.從中選出通曉日語、俄語和韓語的記者各1名,組成一個(gè)報(bào)道小組.則B1和C1不全被選中的概率是
 
考點(diǎn):離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計(jì)
分析:利用對立事件的減法公式進(jìn)行求解,即求出“B1,C1不全被選中”的對立事件“B1,C1全被選中”的概率,然后代入對立事件概率減法公式,即可得到結(jié)果.
解答: 解:從8人中選出日語、俄語和韓語志愿者各1名,
其一切可能的結(jié)果組成的基本事件空間Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)}
由18個(gè)基本事件組成.
用N表示“B1,C1不全被選中”這一事件,
則其對立事件
.
N
表示“B1,C1全被選中”這一事件,
由于
.
N
={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},
事件
.
N
有3個(gè)基本事件組成,
所以P(
.
N
)=
3
18
=
1
6
,
由對立事件的概率公式得P(N)=1-P(
.
N
)=1-
1
6
=
5
6

故答案為:
5
6
點(diǎn)評:本題考查的知識點(diǎn)是古典概型,古典概型要求所有結(jié)果出現(xiàn)的可能性都相等,強(qiáng)調(diào)所有結(jié)果中每一結(jié)果出現(xiàn)的概率都相同.弄清一次試驗(yàn)的意義以及每個(gè)基本事件的含義是解決問題的前提,正確把握各個(gè)事件的相互關(guān)系是解決問題的關(guān)鍵.解決問題的步驟是:計(jì)算滿足條件的基本事件個(gè)數(shù),及基本事件的總個(gè)數(shù),然后代入古典概型計(jì)算公式進(jìn)行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=loga(2013-ax)在區(qū)間(0,1)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ex(sinx+cosx)在區(qū)間[0,
π
2
]上的值域?yàn)?div id="1usrt4l" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程log3(2x+1)=log3(x2-2)的解是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a(x-
1
x
)-2lnx(a∈R),函數(shù)g(x)=-
a
x
,若至少存在一個(gè)x0∈[1,e],使得f(xo)>g(xo)成立,a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
a(x-1)
x+1
在區(qū)間[1,e]上的最小值為0,則amax=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+ax2-4在x=
1
2
處取得極值,若m,n∈[
1
4
,1],則f(m)+f′(n)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線x2-y2=1的離心率為( 。
A、
2
B、2
C、4
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若a2-b2+c2+ac=0則角B的大小為(  )
A、120°B、30°
C、60°D、150°

查看答案和解析>>

同步練習(xí)冊答案