【題目】如圖,直角三角形的頂點(diǎn)坐標(biāo),直角頂點(diǎn),頂點(diǎn)在軸上,點(diǎn)為線段的中點(diǎn),三角形外接圓的圓心為.
(1)求邊所在直線方程;
(2)求圓的方程;
(3)直線過點(diǎn)且傾斜角為,求該直線被圓截得的弦長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓外的有一點(diǎn),過點(diǎn)作直線.
(1)當(dāng)直線過圓心時,求直線的方程;
(2)當(dāng)直線與圓相切時,求直線的方程;
(3)當(dāng)直線的傾斜角為時,求直線被圓所截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,網(wǎng)格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個表面積最大的長方體;第二次切削沿長方體的對角面刨開,得到兩個三棱柱;第三次切削將兩個三棱柱分別沿棱和表面的對角線刨開得到兩個鱉臑和兩個陽馬,則陽馬與鱉臑的體積之比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,矩形ABCD的一邊AB在x軸上,另一邊CD在x軸上方,且AB=8,BC=6,其中A(-4,0)、B(4,0)
(1)若A、B為橢圓的焦點(diǎn),且橢圓經(jīng)過C、D兩點(diǎn),求該橢圓的方程;
(2)若A、B為雙曲線的焦點(diǎn),且雙曲線經(jīng)過C、D兩點(diǎn),求雙曲線的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)的極坐標(biāo)為,曲線 的參數(shù)方程為(為參數(shù)).
(1)直線過且與曲線相切,求直線的極坐標(biāo)方程;
(2)點(diǎn)與點(diǎn)關(guān)于軸對稱,求曲線上的點(diǎn)到點(diǎn)的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)不等式組所表示的平面區(qū)域?yàn)?/span>Dn,記Dn內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))的個數(shù)為f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表達(dá)式;
(2)設(shè)bn=2nf(n),Sn為{bn}的前n項(xiàng)和,求Sn;
(3)記,若對于一切正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在與橢圓交于兩點(diǎn)的直線,使得成立?若存在,求出實(shí)數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地為制定初中七、八、九年級學(xué)生校服的生產(chǎn)計劃,有關(guān)部門準(zhǔn)備對180名初中男生的身高作調(diào)查.
(1)為了達(dá)到估計該地初中三個年級男生身高分布的目的,你認(rèn)為采用怎樣的調(diào)查方案比較合理?
(2)表中的數(shù)據(jù)是使用了某種調(diào)查方法獲得的:七、八、九年級180名男生身高:
注:表中每組可含最低值,不含最高值.
根據(jù)表中的數(shù)據(jù),請你給校服生產(chǎn)廠家指定一份生產(chǎn)計劃思路.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com