8.已知函數(shù)f(x)=$\frac{1+2x}{3-4x}$,求f-1(2)的值.

分析 令f-1(2)=t,由反函數(shù)的性質(zhì)可得f(t)=2,解關(guān)于t的方程可得答案.

解答 解:令f-1(2)=t,由反函數(shù)可得f(t)=$\frac{1+2t}{3-4t}$=2,
解關(guān)于t的方程可得t=$\frac{1}{2}$,即f-1(2)=$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查反函數(shù),屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)中,在區(qū)間(0,+∞)上遞增的奇函數(shù)是(  )
A.y=2xB.y=lgxC.y=x2D.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知定義在R上的函數(shù)f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函數(shù).
(1)求a,b的值;
(2)判斷并證明f(x)在R上的單調(diào)性.
(3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,∠A=30°,a=3,b=3$\sqrt{2}$,∠B=45°或135°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.等差數(shù)列{an}的公差d≠0,前n項(xiàng)和為Sn.且a3、a5、a8依次成等比數(shù)列,則$\frac{{S}_{10}}{{a}_{9}}$=$\frac{13}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若α、β滿足α-β=π,則下列等式成立的是( 。
A.sinα=sinβB.cosα=cosβC.tanα=tanβD.sinα=cosβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=2x-$\frac{2}{x}$-5lnx,g(x)=x2-mx+4,若存在x1∈(0,1),對(duì)任意的x2∈[1,2],總有f(x1)≥g(x2)成立,則實(shí)數(shù)m的取值范圍為[8-5ln2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(ex)=x,則f(1)+f(e)+f(e2)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2+ax+b,且滿足f(1)=f(2)=0,求f(-2)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案