已知一個三角形的三邊長為連續(xù)的三個自然數(shù),且最大角是最小角的2倍,則這個三角形的面積為
 
考點:余弦定理,正弦定理
專題:計算題,解三角形
分析:根據(jù)三角形滿足的兩個條件,設(shè)出三邊長分別為n-1,n,n+1,三個角分別為α,π-3α,2α,由n-1,n+1,sinα,以及sin2α,利用正弦定理列出關(guān)系式,根據(jù)二倍角的正弦函數(shù)公式化簡后,表示出cosα,然后利用余弦定理得到(n-1)2=(n+1)2+n2-2(n-1)n•cosα,將表示出的cosα代入,整理后得到關(guān)于n的方程,求出方程的解得到n的值,從而得到三邊長的值,由海倫公式可得三角形的面積.
解答: 解:設(shè)三角形三邊是連續(xù)的三個自然n-1,n,n+1,三個角分別為α,π-3α,2α,
由正弦定理可得:
n-1
sinα
=
n+1
sin2α
=
n+1
2sinαcosα

∴cosα=
n+1
2(n-1)
,
再由余弦定理可得:(n-1)2=(n+1)2+n2-2(n+1)n•cosα=(n+1)2+n2-2(n+1)n•
n+1
2(n-1)
,
化簡可得:n2-5n=0,解得:n=5或n=0(舍去),
∴n=5,故三角形的三邊長分別為:4,5,6
由海倫公式知p=
a+b+c
2
=
15
2
,S=
p(p-a)(p-b)(p-c)
=
1575
16
=
15
7
4

故答案為:
15
7
4
點評:此題考查了正弦、余弦定理,海倫公式以及二倍角的正弦函數(shù)公式,正弦、余弦定理很好的建立了三角形的邊角關(guān)系,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3-x
+
1
x2-x-6
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={y|x+y=2},N={(x,y)|x-y=4},那么集合M∩N為( 。
A、{x=3,y=-1}
B、{(x,y)|x=3或y=-1}
C、∅
D、{(3,-1)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(-4,3)和圓x2+y2=16.
(1)自P向圓引切線,求此切線的方程;
(2)自P向圓引割線,所得弦長為2
7
,求此割線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義“[x]”,其中[x]表示不超過x的最大整數(shù),記函數(shù)f(x)=[x[x]],x∈R.
(1)若集合A={x|[x]2-2[x]-3≤0},B={x||f(x)-1|≤1},求集合A,B;
(2)當(dāng)x∈[0,2n),n∈N*時,記函數(shù)f(x)的值域中的元素個數(shù)為an,求證:
1
a1-1
+
1
a2-1
+…+
1
an-1
11
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
cos2x+sinxcosx-
3
2

(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[0,
π
4
],求函數(shù)f(x)的取值范圍;
(3)函數(shù)f(x)的圖象經(jīng)過怎樣的平移可使其對應(yīng)的函數(shù)成為奇函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-x (a>1)
(1)求證:
f′(x1)+f′(x2)
2
≥f′(
x1+x2
2
);
(2)求函數(shù)f(x)的最小值,并求最小值小于0時的a取值范圍;
(3)令S(n)=C
 
1
n
f′(1)+C
 
2
n
f′(2)+…+C
 
n-1
n
f′(n-1),求證:S(n)≥(2n-2)f′(
n
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求二次函數(shù)y=2x2在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算下列各式的值:
(1)(
4
9
 
1
2
-(
64
27
 
2
3
+2-2
(2)log49-log2
3
32
+2 log23

查看答案和解析>>

同步練習(xí)冊答案