如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率e=
5
5
,過F1的直線交橢圓于M、N兩點(diǎn),且△MNF2的周長(zhǎng)為4
5

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)AB是過橢圓E中心的任意弦,P是線段AB的垂直平分線與橢圓E的一個(gè)交點(diǎn),求△APB面積的最小值.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)利用△MNF2周長(zhǎng)為4
5
,求出a,利用離心率e=
5
5
,求出c,進(jìn)而求出b,即可求橢圓E的方程;
(Ⅱ)線AB的方程為y=kx,線段AB的垂直平分線為y=-
1
k
x,分別與橢圓方程聯(lián)立,求出P的坐標(biāo),|AB|,表示出△APB面積,換元,利用配方法,即可求△APB面積的最小值.
解答: 解:(Ⅰ)∵△MNF2周長(zhǎng)為4
5

∴4a=4
5
,
∴a=
5

∵離心率e=
5
5
,
∴c=1,
b=
a2-c2
=2,
∴橢圓E的方程為
x2
5
+
y2
4
=1

(Ⅱ)直線AB的方程為y=kx,線段AB的垂直平分線為y=-
1
k
x,
y=-
1
k
x與橢圓方程聯(lián)立,可得x=±
20k2
4k2+5

∴可得P(
20k2
4k2+5
,-
1
k
20k2
4k2+5
),
P到直線AB的距離為d=|
k2+1
k
20k2
4k2+5
|
y=kx與橢圓方程聯(lián)立,可得x=±
20
4+5k2

∴|AB|=
1+k2
•2
20
4+5k2

∴S△ABP=
1
2
|AB|d|=
1
2
1+k2
•2
20
4+5k2
•|
k2+1
k
20k2
4k2+5
|
令t=k2+1(t≥1),則S△ABP=20•
t2
(5t-1)(4t+1)
=20•
1
-(
1
t
-
1
2
)2+
81
4
,
∵t≥1,
∴t=1,即k=0時(shí),△APB面積的最小值為2
5
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查三角形面積的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)命題:
①隨機(jī)事件的概率不可能為0;
②事件A,B中至少有一個(gè)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率大;
③擲硬幣100次,結(jié)果51次出現(xiàn)正面,則出現(xiàn)正面的概率是
51
100
;
④互斥事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件;
⑤如果事件A與B相互獨(dú)立,那么A與
.
B
,
.
A
與B,
.
A
.
B
也都相互獨(dú)立
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+bx+c與y=x交于A,B兩點(diǎn)且|AB|=3
2
,奇函數(shù)g(x)=
x2+c
x+d
,當(dāng)x>0時(shí),f(x)與g(x)都在x=x0取到最小值.
(1)求f(x),g(x)的解析式;
(2)若y=x與y=k+
1
2
f(x)
圖象恰有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商店購(gòu)進(jìn)一批單價(jià)為16元的日用品,銷售一段時(shí)間后,為了獲得更多的利益,商店決定提高商品的銷售價(jià)格,經(jīng)實(shí)際的銷售過程發(fā)現(xiàn),若按每件18元銷售,每月能銷售1200件,若按每件22元銷售,每月可以銷售400件,已知銷售量y(件)與銷售價(jià)格x(元)之間的關(guān)系是一次函數(shù)關(guān)系,求解下列問題:
(1)寫出銷售量y(件)與銷售價(jià)格x(元)之間的函數(shù)關(guān)系式;
(2)如何定價(jià)能使每月的銷售利潤(rùn)最大,并求最大利潤(rùn)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)x,y滿足不等式組
y≥0
x-y≥0
2x-y-2≤0
求w=
y-1
x+1
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,過橢圓G右焦點(diǎn)F的直線m:x=1與橢圓G交于點(diǎn)M(點(diǎn)M在第一象限).
(Ⅰ)求橢圓G的方程;
(Ⅱ)已知A為橢圓G的左頂點(diǎn),平行于AM的直線l與橢圓相交于B,C兩點(diǎn).判斷直線MB,MC是否關(guān)于直線m對(duì)稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos(2x-
π
3
),cosx+sinx),
b
=(1,cosx-sinx),函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知f(A)=
3
2
,a=2,B=
π
3
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O過橢圓
x2
6
+
y2
2
=1
的兩焦點(diǎn)且關(guān)于直線x-y+1=0對(duì)稱,則圓O的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體的體積是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案