5.等差數(shù)列a1,a2,a3…am的前m項(xiàng)和是48,a2+am-1=12,m=8.

分析 由等差數(shù)列的性質(zhì)可得:a2+am-1=12=a1+am.再利用等差數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:a2+am-1=12=a1+am
又Sm=48,
∴48=$\frac{m({a}_{1}+{a}_{m})}{2}$=6m,
解得m=8.
故答案為:8.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式的性質(zhì)、等差數(shù)列的前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.計(jì)算:sin86°cos34°-cos86°sin214°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法不正確的是( 。
A.空間中,一組對(duì)邊平行且相等的四邊形是一定是平行四邊形
B.同一平面的兩條垂線一定共面
C.三角形一定是平面圖形
D.過一條直線有且只有一個(gè)平面與已知平面垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}中,a1=5,且an+1=an+4(n∈N+),則數(shù)列的通項(xiàng)公式an=4n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=2013+ax+loga(1-x)(a>0且a≠1)的圖象過定點(diǎn),則該定點(diǎn)的坐標(biāo)為(0,2014).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.三棱錐三條側(cè)棱兩兩垂直,且側(cè)棱都相等,其外接球表面積為4π,求側(cè)棱長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知:函數(shù)f(x)=sin2x+2$\sqrt{3}$sinxcosx-cos2
(1)求函數(shù)f(x)的最小正周期及當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求f(x)的值域.;
(2)若y=f(x)的圖象在[0,m]上恰好有兩個(gè)點(diǎn)的縱坐標(biāo)為1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+sin2x
(1)求f(x)的最小正周期;
(2)若將f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間$[{\frac{π}{6},\frac{7π}{12}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,若$\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$=1,則$\frac{si{n}^{2}A+si{n}^{2}B}{si{n}^{2}C}$=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案