【題目】已知數(shù)列滿(mǎn)足條件:,且是公比為的等比數(shù)列,設(shè).
(1)求出使不等式成立的的取值范圍;
(2)求和,其中;
(3)設(shè),求數(shù)列的最大項(xiàng)和最小項(xiàng)的值.
【答案】(1);(2);(3)數(shù)列有最大值;數(shù)列有最小值.
【解析】
(1)利用數(shù)列滿(mǎn)足條件:,,且是公比為的等比數(shù)列,可得公比的不等式,故可求q的取值范圍;
(2)先考慮相鄰項(xiàng)的關(guān)系,可知比值為常數(shù),故可知數(shù)列是等比數(shù)列,由于公比不定,故要進(jìn)行分類(lèi)討論;
(3)先求數(shù)列的通項(xiàng),再利用單調(diào)性,研究其最值.
(1)由題意得,
則不等式即為,
由題設(shè),,故從上式可得 ,
,故;
(2) 由(1)得,所以,,
所以,
,所以是首項(xiàng)為,公比為q的等比數(shù)列,
所以,
當(dāng)時(shí),,;
當(dāng)時(shí),;
當(dāng)時(shí),;
,
(3)從上式可知,設(shè),
當(dāng)時(shí),遞減,
,
當(dāng)時(shí),遞減,,,
所以當(dāng)時(shí),數(shù)列有最大值;當(dāng)時(shí),數(shù)列有最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,)的周期為,圖像的一個(gè)對(duì)稱(chēng)中心為,將函數(shù)圖像上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(縱坐標(biāo)不變),在將所得圖像向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖像.
(1)求函數(shù)與的解析式;
(2)是否存在,使得,,按照某種順序成等差數(shù)列?若存在,請(qǐng)確定的個(gè)數(shù);若不存在,說(shuō)明理由.
(3)求實(shí)數(shù)a與正整數(shù)n,使得在內(nèi)恰有2013個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)有個(gè)元素的總體進(jìn)行抽樣,先將總體分成兩個(gè)子總體和(m是給定的正整數(shù),且),再?gòu)拿總(gè)子總體中各隨機(jī)抽取2個(gè)元素組成樣本,用表示元素i和j同時(shí)出現(xiàn)在樣本中的概率,則_________;所有的和等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD與BC是四面體ABCD中互相垂直的棱,BC=2. 若AD=2c,且AB+BD=AC+CD=2a,其中a、c為常數(shù),則四面體ABCD的體積的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市隨機(jī)選取位顧客,記錄了他們購(gòu)買(mǎi)甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購(gòu)買(mǎi),“×”表示未購(gòu)買(mǎi).
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
85 | √ | × | × | × |
× | √ | × | × |
(Ⅰ)估計(jì)顧客同時(shí)購(gòu)買(mǎi)乙和丙的概率;
(Ⅱ)估計(jì)顧客在甲、乙、丙、丁中同時(shí)購(gòu)買(mǎi)中商品的概率;
(Ⅲ)如果顧客購(gòu)買(mǎi)了甲,則該顧客同時(shí)購(gòu)買(mǎi)乙、丙、丁中那種商品的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】著名數(shù)學(xué)家華羅庚先生曾說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休.”在數(shù)學(xué)的學(xué)習(xí)和研究中,我們經(jīng)常用函數(shù)的圖象來(lái)研究函數(shù)的性質(zhì),也經(jīng)常用函數(shù)的解析式來(lái)琢磨函數(shù)的圖象的特征,如某體育品牌的LOGO為,可抽象為如圖所示的軸對(duì)稱(chēng)的優(yōu)美曲線,下列函數(shù)中,其圖象大致可“完美”局部表達(dá)這條曲線的函數(shù)是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型科學(xué)競(jìng)技真人秀節(jié)目挑選選手的方式為:不但要對(duì)選手的空間感知、照相式記憶能力進(jìn)行考核,而且要讓選手經(jīng)過(guò)名校最權(quán)威的腦力測(cè)試,120分以上才有機(jī)會(huì)入圍.某重點(diǎn)高校準(zhǔn)備調(diào)查腦力測(cè)試成績(jī)是否與性別有關(guān),在該高校隨機(jī)抽取男、女學(xué)生各100名,然后對(duì)這200名學(xué)生進(jìn)行腦力測(cè)試.規(guī)定:分?jǐn)?shù)不小于120分為“入圍學(xué)生”,分?jǐn)?shù)小于120分為“未入圍學(xué)生”.已知男生入圍24人,女生未入圍80人.
(1)根據(jù)題意,填寫(xiě)下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%以上的把握認(rèn)為腦力測(cè)試后是否為“入圍學(xué)生”與性別有關(guān);
性別 | 入圍人數(shù) | 未入圍人數(shù) | 總計(jì) |
男生 | |||
女生 | |||
總計(jì) |
(2)用分層抽樣的方法從“入圍學(xué)生”中隨機(jī)抽取11名學(xué)生,求這11名學(xué)生中男、女生人數(shù);若抽取的女生的腦力測(cè)試分?jǐn)?shù)各不相同(每個(gè)人的分?jǐn)?shù)都是整數(shù)),分別求這11名學(xué)生中女生測(cè)試分?jǐn)?shù)平均分的最小值.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).
(1)若函數(shù)的圖象在點(diǎn)處的切線方程為,求實(shí)數(shù)a的值;
(2)若函數(shù)有2個(gè)不同的零點(diǎn),.
①求實(shí)數(shù)a的取值范圍;
②求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com