分析 求得h(x)的導(dǎo)數(shù),求得在x=0處的切線的斜率,解方程可得b=1,進(jìn)而得到h(x)的解析式和導(dǎo)數(shù),判斷在R上遞增,要證h(mn)>h(e2),只需證mn>e2.設(shè)m>n>0,k(x)=lnx-ax,原不等式mn>e2等價(jià)于lnm+lnn>2?a(m+n)>2,?$\frac{lnm-lnn}{m-n}$>$\frac{2}{m+n}$?ln$\frac{m}{n}$>$\frac{2(m-n)}{m+n}$,令$\frac{m}{n}$=t,則t>1,ln$\frac{m}{n}$>$\frac{2(m-n)}{m+n}$?lnt>$\frac{2(t-1)}{t+1}$,設(shè)l(t)=lnt-$\frac{2(t-1)}{t+1}$,(t>1),運(yùn)用導(dǎo)數(shù)判斷單調(diào)性,即可得證.
解答 證明:h(x)=g(x)+f(x)=$\frac{1}{3}$bx3-bx2-3bx+1+x2+4x,
h′(x)=bx2-2bx-3b+2x+4,
函數(shù)h(x)在(0,h(0))處的切線斜率為k=4-3b=1,
解得b=1,
則有h(x)=$\frac{1}{3}$x3+x+1,h′(x)=x2+1>0恒成立,
即有h(x)在R上遞增,
要證h(mn)>h(e2),只需證mn>e2.
設(shè)m>n>0,k(x)=lnx-ax,
∵k(m)=0,k(n)=0,
∴l(xiāng)nm-am=0,lnn-an=0,
∴l(xiāng)nm-lnn=a(m-n),lnm+lnn=a(m+n)
原不等式mn>e2等價(jià)于lnm+lnn>2?a(m+n)>2,
?$\frac{lnm-lnn}{m-n}$>$\frac{2}{m+n}$?ln$\frac{m}{n}$>$\frac{2(m-n)}{m+n}$,
令$\frac{m}{n}$=t,則t>1,
∴l(xiāng)n$\frac{m}{n}$>$\frac{2(m-n)}{m+n}$?lnt>$\frac{2(t-1)}{t+1}$,
設(shè)l(t)=lnt-$\frac{2(t-1)}{t+1}$,(t>1),
∴l(xiāng)′(t)=$\frac{(t-1)^{2}}{t(t+1)^{2}}$>0,
∴函數(shù)l(t)在(1,+∞)是遞增,
∴l(xiāng)(t)>l(1)=0即不等式lnt>$\frac{2(t-1)}{t+1}$成立,
故不等式mn>e2成立.
即有h(mn)>h(e2).
點(diǎn)評 本題主要考查了導(dǎo)數(shù)在求切線斜率和函數(shù)單調(diào)性中的應(yīng)用,考查構(gòu)造函數(shù)和運(yùn)用單調(diào)性,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {a|1<a<2} | B. | {a|1<a≤2} | C. | {a|a>2} | D. | {a|a≥2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{2}$ | B. | -3或-$\frac{3}{2}$ | C. | $\frac{3}{2}$ | D. | 3或$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com