某幾何體的三視圖所圖所示,則它的表面積為(  )
A、20+
5
π
B、24-π
C、24+(
5
-1)π
D、20
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:幾何體是正方體挖去一個(gè)等高的圓錐,根據(jù)三視圖判斷圓錐的高與底面半徑,求出母線長(zhǎng),判斷正方體的邊長(zhǎng),把數(shù)據(jù)代入表面積公式計(jì)算.
解答: 解:由三視圖知:幾何體是正方體挖去一個(gè)等高的圓錐,
圓錐的高為2,底面半徑為1,母線長(zhǎng)為
5
,正方體的邊長(zhǎng)為2,
幾何體的表面積S=S正方體+S圓錐側(cè)-S圓錐底面=6×22+π×1×
5
-π×12=24+(
5
-1
)π.
故選:C.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的表面積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在某班進(jìn)行的演講比賽中,共有5位選手參加,其中3位女生,2位男生.如果2位男生不能連著出場(chǎng),且女生甲不能排在第一個(gè),那么出場(chǎng)順序的排法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面上,有5個(gè)非零向量
a1
、
a2
、
a3
a4
、
a5
,且
ak
ak+1
(k=1,2,3,4),各向量的橫坐標(biāo)和縱坐標(biāo)均為非負(fù)實(shí)數(shù),若|
a1
|+|
a2
|+|
a3
|+|
a4
|+|
a5
|=l(常數(shù)),則|
a1
+
a2
+
a3
+
a4
+
a5
|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合A={x|x-2>0},B={x|x2-1≤0},則(∁UA)∪B=( 。
A、{x|-1≤x≤1}
B、{x|-1≤x≤1或x>2}
C、{x|-1≤x≤2}
D、{x|x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x+3y-1=0的兩側(cè),且a>0,b>0,則w=a-2b的取值范圍是( 。
A、[-
2
3
,
1
2
]
B、(-
2
3
,0)
C、(0,
1
2
D、(-
2
3
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合U=R,A={x|3x-x2>0},B={x|y=log2(x-2)},則A∩B為( 。
A、[2,3)B、(2,3)
C、(0,2)D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<a<b<1,則( 。
A、3b<3a
B、(lga)2<(lgb)2
C、loga3>logb3
D、(
1
2
a<(
1
2
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知l,m為兩條不同的直線,α為一個(gè)平面.若l∥α,則“l(fā)∥m”是“m∥α”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x∈R,x>lnx+2,命題q:?x∈R,log2x≥0,則( 。
A、命題p∨q是假命題
B、命題p∧q是真命題
C、命題p∧(¬q)是真命題
D、命題p∨(¬q)是假命題

查看答案和解析>>

同步練習(xí)冊(cè)答案