1.如圖給定的是紙盒的外表面,下列哪一項能由它折疊而成(  )
A.B.C.D.

分析 根據(jù)已知中紙盒的外表面,分析紙盒的幾何特征,利用排除法,可得答案.

解答 解:由已知中紙盒展開圖,可得:
該幾何體是一個棱臺,
從上住下看,四個側(cè)面按逆時間排列應(yīng)為:①空白梯形,②有中位線的梯形,③有兩條平行于底面的三等分線的梯形,④有側(cè)高的梯形,
故排除A,B,
結(jié)合上底中位線的方向,可知②④側(cè)面與上底的中位線平行,可排除D,
故選:C

點評 本題考查的知識點是空間想象能力,幾何體的展開圖,還原幾何體的并分析出幾何特征,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.頂點在原點且以雙曲線$\frac{x^2}{3}-{y^2}=1$的左準線為準線的拋物線方程是y2=6x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,A1,A2,A3,…An分別是拋物線y=x2上的點,A1B1垂直與x軸,A1C1垂直于y軸,線段B1C1交拋物線與A2,再作A2B2⊥x軸,A2C2⊥y軸,線段B2C2交拋物線于A3,這樣下去,分別可以得到A4,A5,…,An,其中A1的坐標為(1,1),則S${\;}_{矩形{A}_{n}{B}_{n}O{C}_{n}}$=($\frac{\sqrt{5}-1}{2}$)3n-3..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)如果兩個角有相同的始邊和終邊,這兩個角相等嗎?為什么?
(2)鈍角是第幾象限的角?第二象限的角都是鈍角嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在正六棱柱ABCDEF-A1B1C1D1E1F1中,用$\overrightarrow{AB}$,$\overrightarrow{AF}$,$\overrightarrow{A{A}_{1}}$表示向量$\overrightarrow{A{D}_{1}}$,其結(jié)果為$\overrightarrow{A{D}_{1}}$=$\overrightarrow{A{A}_{1}}$+2($\overrightarrow{AB}$+$\overrightarrow{AF}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)g(x)=$\left\{\begin{array}{l}{{e}^{x}}&{x≤0}\\{lnx}&{x>0}\end{array}\right.$,則g(e-1)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列說法:
①如果非零向量$\overrightarrow{a}$與$\overrightarrow$的方向相同或相反,那么$\overrightarrow{a}$+$\overrightarrow$的方向必與$\overrightarrow{a}$,$\overrightarrow$之一的方向相同;
②△ABC中,必有$\overrightarrow{AB}$$+\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$;
③若$\overrightarrow{AB}$+$\overrightarrow{BC}$$+\overrightarrow{CA}$=$\overrightarrow{0}$,則A,B,C為一個三角形的三個頂點;
④若$\overrightarrow{a}$,$\overrightarrow$均為非零向量,則|$\overrightarrow{a}$+$\overrightarrow$|與|$\overrightarrow{a}$|+|$\overrightarrow$|一定相等.
其中正確說法的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知y=asinx+b(a<0)的最大值為$\frac{3}{2}$,最小值為-$\frac{1}{2}$,則a=-1,b=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點.
(1)求AD1與DB所成角的大;
(2)求AE與平面ABCD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案