設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且方程x2-anx-an=0有一根為Sn-1,其中an=
S1,n=1
Sn-Sn-1,n≥2

(1)求S1,S2,S3的值;
(2)猜出Sn的表達(dá)式,并用數(shù)學(xué)歸納法證明.
考點(diǎn):數(shù)學(xué)歸納法,數(shù)列遞推式
專(zhuān)題:綜合題,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)先確定Sn-1Sn-2Sn+1=0,再計(jì)算S1,S2,S3的值;
(2)由(1)猜想Sn=
n
n+1
,用數(shù)學(xué)歸納法證明數(shù)列問(wèn)題時(shí)分為兩個(gè)步驟,第一步,先證明當(dāng)當(dāng)n=1時(shí),已知結(jié)論成立,第二步,先假設(shè)n=k時(shí)結(jié)論成立,利用此假設(shè)結(jié)合題設(shè)條件證明當(dāng)n=k+1時(shí),結(jié)論也成立即可.
解答: 解:(1)由題設(shè)(Sn-1)2-an(Sn-1)-an=0,
Sn2-2Sn+1-anSn=0.
當(dāng)n≥2時(shí),an=Sn-Sn-1
代入上式得Sn-1Sn-2Sn+1=0.①
由(1)得S1=a1=
1
2
,S2=a1+a2=
1
2
+
1
6
=
2
3

由①可得S3=
3
4

(2)由(1)猜想Sn=
n
n+1

下面用數(shù)學(xué)歸納法證明這個(gè)結(jié)論.
(i)n=1時(shí)已知結(jié)論成立.
(ii)假設(shè)n=k時(shí)結(jié)論成立,即Sk=
k
k+1

當(dāng)n=k+1時(shí),由①得Sk+1=
1
2-Sk
,即Sk+1=
k+1
k+2
,故n=k+1時(shí)結(jié)論也成立.
綜上,由(i)、(ii)可知Sn=
n
n+1
對(duì)所有正整數(shù)n都成立.
點(diǎn)評(píng):本題考查數(shù)列的函數(shù)特性,考查考查了數(shù)學(xué)歸納法,數(shù)學(xué)歸納法的基本形式:設(shè)P(n)是關(guān)于自然數(shù)n的命題,若1°P(n0)成立(奠基);2°假設(shè)P(k)成立(k≥n0),可以推出P(k+1)成立(歸納),則P(n)對(duì)一切大于等于n0的自然數(shù)n都成立
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=log 
1
2
(x2-2x)的單調(diào)遞增區(qū)間是( 。
A、(1,+∞)
B、(2,+∞)
C、(-∞,0)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=xlnx,則這個(gè)函數(shù)在點(diǎn)(1,0)處的切線方程是( 。
A、y=2x-2
B、y=2x+2
C、y=x-1
D、y=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線C1
x2
16
+
y2
4
=1(y≤0),曲線C2:x2=4y.自曲線C1:上一點(diǎn)A作C2的兩條切線切點(diǎn)分別為B,C.
(1)若A點(diǎn)坐標(biāo)為(2
3
,-1),F(xiàn)(0,1).求證:B,F(xiàn),C三點(diǎn)共線;
(2)求S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓錐母線長(zhǎng)為6,底面圓半徑長(zhǎng)為4,點(diǎn)M是母線PA的中點(diǎn),AB是底面圓的直徑,半徑OC與母線PB所成的角的大小等于60°.
(1)求圓錐的側(cè)面積和體積.
(2)求異面直線MC與PO所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線的焦點(diǎn)F在y軸正半軸上,過(guò)F斜率為
1
2
的直線l和x軸交于點(diǎn)A,且△OAF(O為坐標(biāo)原點(diǎn))的面積為4,求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖所示的多面體中,四邊形ABCD為正方形,四邊形ADPQ是直角梯形,AD⊥DP,CD⊥平面PDAQ,AB=AQ=
1
2
DP.
(1)求證:棱錐Q-ABCCD與棱錐P-DCQ的體積相等.
(2)求異面直線CP與BQ所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0且a≠1,設(shè)P:函數(shù)y=ax在R上單調(diào)遞減,Q:函數(shù)y=ln(x2+ax+1)的定義域?yàn)镽,若P與Q有且僅有一個(gè)正確,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x•ekx(k≠0)((ekx)′=kekx
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案