直線y=x+2和直線x-y+1=0的位置關(guān)系是( 。
A、平行B、垂直
C、相交但不垂直D、重合
考點(diǎn):直線的一般式方程與直線的垂直關(guān)系
專題:直線與圓
分析:由題意可得兩直線斜率相同,截距不同,可得兩直線平行.
解答: 解:直線x-y+1=0可化為y=x+1,
易知兩直線斜率相同,截距不同,
∴兩直線平行,
故選:A
點(diǎn)評(píng):本題考查兩直線的平行關(guān)系,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+3是偶函數(shù),且其圖象過點(diǎn)(-1,4).
(1)求f(x)的解析式;
(2)求函數(shù)F(x)=f(ex-a)+f(e-x-a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上、下頂點(diǎn)分別為A1A2,左、右頂點(diǎn)分別為B1,B2為坐標(biāo)原點(diǎn),若直線A1B2的斜率為-
1
2
,△A1OB2的斜邊上的中線長(zhǎng)為
5
2

(1)求橢圓C的方程;
(2)P是橢圓C上異于A1,A2,B1,B2的任一點(diǎn),直線PA1,PA2分別交x軸于點(diǎn)N,M,若直線OT與過點(diǎn)M,N的圓G相切,切點(diǎn)為T.證明:線段OT的長(zhǎng)為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式(1+x2)(-2x+3)>0的解集是( 。
A、{
3
2
}
B、{x|x<
3
2
}
C、{x|x>
3
2
}
D、{x|x>-
3
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)F是拋物線y2=8x的焦點(diǎn),兩曲線的一個(gè)公共點(diǎn)為P,且|PF|=5,則雙曲線的漸近線方程為( 。
A、y=±
1
2
x
B、y=±2x
C、y=±
3
3
x
D、y=±
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(x+
π
4
)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來2的倍,再向左平移
π
2
個(gè)單位,所得圖象的函數(shù)解析式是(  )
A、y=-sin(2x+
π
4
B、y=sin(2x+
4
C、y=cos
x
2
D、y=sin(
x
2
+
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|x|+|x-1|≤3的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=logax在區(qū)間[a,2a]上的最大值與最小值之差為
1
2
,則a=( 。
A、
2
1
4
B、2或
1
2
C、4
D、4或
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax+1(a是常數(shù))在x=0處的切線斜率為-1.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)x>0時(shí),證明ex>x2

查看答案和解析>>

同步練習(xí)冊(cè)答案