如圖,已知點(diǎn)A(-1,0)與點(diǎn)B(1,0),C是圓x2+y2=1上的動(dòng)點(diǎn),連結(jié)BC并延長至D,使得CD=BC,求AC與OD的交點(diǎn)P的軌跡方程.
+y2(y≠0)
設(shè)動(dòng)點(diǎn)P(x,y),由題意可知P是△ABD的重心.由A(-1,0),B(1,0),令動(dòng)點(diǎn)C(x0,y0),則D(2x0-1,2y0),由重心坐標(biāo)公式得代入x2+y2=1,整理得+y2(y≠0),故所求軌跡方程為+y2(y≠0).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),圓:,過點(diǎn)的動(dòng)直線與圓交于兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn).
(1)求的軌跡方程;
(2)當(dāng)時(shí),求的方程及的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為圓上任意一點(diǎn),為圓上任意一點(diǎn),
點(diǎn)組成的區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044816541399.png" style="vertical-align:middle;" />,在內(nèi)部任取一點(diǎn),則該點(diǎn)落在區(qū)域上的概率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)對(duì)于滿足的任意,,給出下列結(jié)論:




其中正確的是(      )
A.①③ B.①④ C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求半徑為4,與圓x2+y2-4x-2y-4=0相切,且和直線y=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1,動(dòng)點(diǎn)M到圓C的切線長與|MQ|的比等于.求動(dòng)點(diǎn)M的軌跡方程,并說明它表示什么.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+a+1=0恒過定點(diǎn)C,則以C為圓心,為半徑的圓的方程為(  )
A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0
C.x2+y2+2x-4y=0D.x2+y2-2x-4y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為圓心,為半徑的圓的方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

方程x2+y2+4mx-2y+5m=0表示圓的充要條件是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案