【題目】已知圓C的方程(x﹣1)2+y2=1,P是橢圓 =1上一點(diǎn),過P作圓的兩條切線,切點(diǎn)為A,B,則 的取值范圍為( )
A.
B.
C.
D.
【答案】A
【解析】解:設(shè)PA與PB的夾角為2α,
則|PA|=PB|= ,
∴y= =| || |cos2α= cos2α
= cos2α.
記cos2α=u,則y= =﹣3+(1﹣u)+ ≥2 ﹣3,
∵P在橢圓的左頂點(diǎn)時(shí),sinα= ,∴cos2α= ,
∴ 的最大值為 = ,
∴ 的范圍為[2 ﹣3, ],
故選:A.
由圓切線的性質(zhì),即與圓心切點(diǎn)連線垂直設(shè)出一個(gè)角,通過解直角三角形求出PA,PB的長(zhǎng);利用向量的數(shù)量積公式表示出 ,利用三角函數(shù)的二倍角公式化簡(jiǎn)函數(shù),通過換元,再利用基本不等式求出最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,且AB=4,BC=CD=ED=EA=2.
(1)求二面角E﹣AB﹣D的正切值;
(2)在線段CE上是否存在一點(diǎn)F,使得平面EDC⊥平面BDF?若存在,求 的值,若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是以2為首項(xiàng)的等差數(shù)列,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式及前項(xiàng)和;
(Ⅱ)若,求數(shù)列的前項(xiàng)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最大值為, 的圖象關(guān)于軸對(duì)稱.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)設(shè),是否存在區(qū)間,使得函數(shù)在區(qū)間上的值域?yàn)?/span>?若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓心C(1,2),且經(jīng)過點(diǎn)(0,1) (Ⅰ)寫出圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P(2,﹣1)作圓C的切線,求切線的方程及切線的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列4個(gè)命題
①“若,則”的否命題是“若,則”;
②若命題,則為真命題;
③“平面向量夾角為銳角,則”的逆命題為真命題;
④“函數(shù)有零點(diǎn)”是“函數(shù)在上為減函數(shù)”的充要條件.
其中正確的命題個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)﹣f(x)=2x+5;函數(shù)g(x)=ax(a>0且a≠1)
(1)求f(x)的解析式;
(2)若g(2)= ,且g[f(x)]≥k對(duì)x∈[﹣1,1]恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=a﹣ ,
(1)若x∈[ ,+∞),①判斷函數(shù)g(x)=f(x)﹣2x的單調(diào)性并加以證明;②如果f(x)≤2x恒成立,求a的取值范圍;
(2)若總存在m,n使得當(dāng)x∈[m,n]時(shí),恰有f(x)∈[2m,2n],求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com