有11個座位,現(xiàn)安排2人就座,規(guī)定中間的1個座位不能坐,并且這兩個人不相鄰,那么不同坐法的種數(shù)是
 
考點:計數(shù)原理的應(yīng)用
專題:排列組合
分析:利用間接法,11個座位去掉中間的一個座位,任意排兩個,然后再減去相鄰的情況,就是不相鄰的,問題得以解決
解答: 解:11個座位去掉中間的一個座位,任意排兩個有
A
2
10
=90種,
把這兩個捆綁在一起作為一個元素,
相鄰的有
2A
2
2
•A
1
4
=16種,利用間接法,不同坐法有90-16=74種.
故答案為:74.
點評:本題主要考查了利用間接法進行排列,本題關(guān)鍵是利用捆綁法,找到相鄰的種數(shù).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在無窮數(shù)列{an}中,a1=1,對于任意n∈N*,都有an∈N*,an<an+1.設(shè)m∈N*,記使得an≤m成立的n最大值為bm
(Ⅰ)設(shè)數(shù)列為1,3,5,7,…,寫出b1,b2,b3的值;
(Ⅱ)若{bn}為等差數(shù)列,求出所有可能的數(shù)列{an};
(Ⅲ)設(shè)ap=q,a1+a2+…+ap=A,求b1+b2+…+bq的值.(用p,q,A表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1-(x-1)2
,0≤x<2
f(x-2),x≥2
,若對于正數(shù)kn(n∈N*),直線y=kn•x與函數(shù)y=f(x)的圖象恰有2n+1個不同交點,則
lim
n→∞
(k12+k22+…+kn2)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定積分
1
0
(2+
1-x2
)dx=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某一部件由三個電子元件按如圖所示方式連接而成,元件1或元件2正常工作,則部件正常工作:設(shè)三個電子元件的使用壽命(單位:小時)均服從正態(tài)分布N(1000,σ2),若每個元件使用壽命超過1200小時的概率為
1
3
,且各個元件能否正常工作相互獨立,那么該部件的使用壽命超過800小時的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的偽代碼,輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=2+
2
sinx的最小正周期和最小值分別為(  )
A、π,1
B、2π,1
C、π,2-
2
D、2π,2-
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i是虛數(shù)單位,若(2-i)•z=-i,則z=( 。
A、-
2
5
+
1
5
i
B、
1
5
-
2
5
i
C、-
2
5
-
1
5
i
D、
1
5
+
2
5
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)Sn為等差數(shù)列{an}的前n項和,S14=7a10,a7=2,則a9=( 。
A、-4B、4C、-2D、2

查看答案和解析>>

同步練習冊答案