【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫(xiě)出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)是曲線上的動(dòng)點(diǎn),求點(diǎn)到曲線的最小距離.
【答案】(1)(2)
【解析】
(1) 曲線C1的參數(shù)方程消去參數(shù),能求出曲線C1的普通方程,曲線C2的極坐標(biāo)方程利用,能求出曲線C2的直角坐標(biāo)方程;(2) 設(shè)點(diǎn)的坐標(biāo)為,利用點(diǎn)到直線的距離表示點(diǎn)到曲線的最小距離,結(jié)合三角函數(shù)的圖像與性質(zhì)即可得到最小值.
(1)消去參數(shù)得到,
故曲線的普通方程為
,由
得到,
即,故曲線的普通方程為
(2)〖解法1〗設(shè)點(diǎn)的坐標(biāo)為,
點(diǎn)到曲線的距離
所以,當(dāng)時(shí),的值最小,
所以點(diǎn)到曲線的最小距離為span>.
(2)〖解法2〗設(shè)平行直線:的直線方程為
當(dāng)直線與橢圓相切于點(diǎn)P時(shí),P到直線的距離取得最大或最小值。
由得,
令其判別式,解得,
經(jīng)檢驗(yàn),當(dāng)時(shí),點(diǎn)P到直線的距離最小,最小值為
所以點(diǎn)到曲線的最小距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且cosA=,cosB=.
(1)求sinC的值;
(2)若a-b=4-2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+交通”模式的迅猛發(fā)展,“共享自行車(chē)”在很多城市相繼出現(xiàn)。某運(yùn)營(yíng)公司為了了解某地區(qū)用戶(hù)對(duì)其所提供的服務(wù)的滿(mǎn)意度,隨機(jī)調(diào)查了40個(gè)用戶(hù),得到用戶(hù)的滿(mǎn)意度評(píng)分如下:
用戶(hù)編號(hào) | 評(píng)分 | 用戶(hù)編號(hào) | 評(píng)分 | 用戶(hù)編號(hào) | 評(píng)分 | 用戶(hù)編號(hào) | 評(píng)分 | |||
1 2 3 4 5 6 7 8 9 10 | 78 73 81 92 95 85 79 84 63 86 | 11 12 13 14 15 16 17 18 19 20 | 88 86 95 76 97 78 88 82 76 89 | 21 22 23 24 25 26 27 28 29 30 | 79 83 72 74 91 66 80 83 74 82 | 31 32 33 34 35 36 37 38 39 40 | 93 78 75 81 84 77 81 76 85 89 |
用系統(tǒng)抽樣法從40名用戶(hù)中抽取容量為10的樣本,且在第一分段里隨機(jī)抽到的評(píng)分?jǐn)?shù)據(jù)為92.
(1)請(qǐng)你列出抽到的10個(gè)樣本的評(píng)分?jǐn)?shù)據(jù);
(2)計(jì)算所抽到的10個(gè)樣本的均值和方差;
(3)在(2)條件下,若用戶(hù)的滿(mǎn)意度評(píng)分在之間,則滿(mǎn)意度等級(jí)為“級(jí)”。試應(yīng)用樣本估計(jì)總體的思想,根據(jù)所抽到的10個(gè)樣本,估計(jì)該地區(qū)滿(mǎn)意度等級(jí)為“級(jí)”的用戶(hù)所占的百分比是多少?
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線交于A,B兩點(diǎn),且,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,側(cè)面底面,底面為直角梯形,∥,,,,,為的中點(diǎn),為的中點(diǎn)。
(1)求證:∥平面;
(2)求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)。
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù),討論函數(shù)的單調(diào)性;
(3)若(2)中函數(shù)有兩個(gè)極值點(diǎn),且不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)兩點(diǎn),且圓心在直線上.
(1)求圓的方程;
(2)已知過(guò)點(diǎn)的直線與圓相交截得的弦長(zhǎng)為,求直線的方程;
(3)已知點(diǎn),在平面內(nèi)是否存在異于點(diǎn)的定點(diǎn),對(duì)于圓上的任意動(dòng)點(diǎn),都有為定值?若存在求出定點(diǎn)的坐標(biāo),若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人從上一層到二層需跨10級(jí)臺(tái)階. 他一步可能跨1級(jí)臺(tái)階,稱(chēng)為一階步,也可能跨2級(jí)臺(tái)階,稱(chēng)為二階步,最多能跨3級(jí)臺(tái)階,稱(chēng)為三階步. 從一層上到二層他總共跨了6步,而且任何相鄰兩步均不同階. 則他從一層到二層可能的不同過(guò)程共有( )種.
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某中學(xué)甲、乙兩班共有25名學(xué)生報(bào)名參加了一項(xiàng) 測(cè)試.這25位學(xué)生的考分編成的莖葉圖,其中有一個(gè)數(shù)據(jù)因電腦操作員不小心刪掉了(這里暫用x來(lái)表示),但他清楚地記得兩班學(xué)生成績(jī)的中位數(shù)相同.
(Ⅰ)求這兩個(gè)班學(xué)生成績(jī)的中位數(shù)及x的值;
(Ⅱ)如果將這些成績(jī)分為“優(yōu)秀”(得分在175分 以上,包括175分)和“過(guò)關(guān)”,若學(xué)校再?gòu)倪@兩個(gè)班獲得“優(yōu)秀”成績(jī)的考生中選出3名代表學(xué)校參加比賽,求這3人中甲班至多有一人入選的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com