為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
喜愛打籃球 不喜愛打籃球 合計(jì)
男生 a 5
女生 10 d
合計(jì) 50
為了進(jìn)一步了解男生喜愛打籃球與不喜愛打籃球的原因,應(yīng)再從男生中用分層抽樣的方法抽出10人作進(jìn)一步調(diào)查,已知抽取的不喜愛打籃球的男生為2人.
(Ⅰ)求表中a、d的數(shù)值,并將上面的列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過程);
(Ⅱ)能否在犯錯誤的概率不超過0.005的前提下認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
下面的臨界值表供參考:
p(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(Ⅰ)根據(jù)從男生中用分層抽樣的方法抽出10人作進(jìn)一步調(diào)查,已知抽取的不喜愛打籃球的男生為2人,即可得到a、d的數(shù)值,從而可得列聯(lián)表;
(2)利用公式求得K2,與臨界值比較,即可得到結(jié)論.
解答: 解:(Ⅰ)由題意,
10
a+5
=2
,∴a=20,∴d=15,
故可得列聯(lián)表補(bǔ)充如下
喜愛打籃球 不喜愛打籃球 合計(jì)
男生 20 5 25
女生 10 15 25
合計(jì) 30 20 50
(Ⅱ)∵K2=
50×(20×15-10×5)2
30×25×25×25
≈8.333>7.879
∴有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān),即在犯錯誤的概率不超過0.005的前提下認(rèn)為喜愛打籃球與性別有關(guān).
點(diǎn)評:本題考查獨(dú)立性檢驗(yàn)知識,考查學(xué)生的計(jì)算能力,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x∈R||x|>2},N={x∈R|x2-4x+3<0},則集合(∁RM)∩N 等于( 。
A、{x|x<2}
B、{x|-2≤x≤2}
C、{x|-2≤x<1}
D、{x|1<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x=
1-y2
表示的曲線是( 。
A、一條射線B、一個圓
C、兩條射線D、半個圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中錯誤的是(  )
A、如果命題“¬p”與命題“p∨q”都是真命題,那么命題q一定是真命題
B、命題“若a=0,則ab=0”的否命題是“若a≠0,則ab≠0”
C、若命題p:?x∈R,x2-x+1<0,則¬p:?x∈R,x2-x+1≥0
D、“a=2”是“直線ax+2y=0平行于直線x+y=1”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中真命題的個數(shù)是( 。
①若A,B,C,D是空間任意四點(diǎn),則有
AB
+
BC
+
CD
+
DA
=
0
;
②在四面體ABCD中,若
AB
CD
=0,
AC
BD
=0
,則
AD
BC
=0
;
③在四面體ABCD中點(diǎn),且滿足
AB
AC
=0,
AC
AD
=0
,
AB
AD
=0
.則△BDC是銳角三角形
④對空間任意點(diǎn)O與不共線的三點(diǎn)A,B,C,若
OP
=x
OA
+y
OA
+z
OC
(其中x,y,z∈R且x+y+z=1),則P,A,B,C四點(diǎn)共面.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記等差數(shù)列{an}的前n項(xiàng)和為Sn,a1+a3=2且S8=-52.?dāng)?shù)列{bn}的前n項(xiàng)和Tn滿足Tn=4-bn
(Ⅰ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅱ)若cn=
|an|
bn
,求數(shù)列{cn}的前n項(xiàng)和Ln

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x5)=log2x,求f(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(x,y),A(-1,0),向量
.
PA
.
m
=(1,1)共線.
(1)求y關(guān)于x的函數(shù)解析式.
(2)是否在直線y=2x和直線y=3x上分別存在一點(diǎn)B、C,使得滿足∠BPC為銳角時x取值集合為{x|x<-
7
 或x>
7
}?若存在,求出這樣的B、C的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tana=-
4
3
,求
(1)
6sina+cosa
3sina-2cosa
的值;  
(2)
1
2sinacosa+cos2a
的值.

查看答案和解析>>

同步練習(xí)冊答案