【題目】行了一次水平測試。用系統(tǒng)抽樣的方法抽取了50名學生的數(shù)學成績,準備進行分析和研究。經(jīng)統(tǒng)計成績的分組及各組的頻數(shù)如下:,2;,3;,10;,15;,12;,8.
(Ⅰ)頻率分布表
分組 | 頻數(shù) | 頻率 |
2 | ||
3 | ||
10 | ||
15 | ||
12 | ||
8 | ||
合計 | 50 |
頻率分布直方圖為
(Ⅰ)完成樣本的頻率分布表;畫出頻率分直方圖;
(Ⅱ)估計成績在85分以下的學生比例;
(Ⅲ)請你根據(jù)以上信息去估計樣本的眾數(shù)、中位數(shù)、平均數(shù).(精確到0.01)
【答案】(I)見詳解;(II);(III)眾數(shù);中位數(shù);平均數(shù).
【解析】
(Ⅰ)根據(jù)題中數(shù)據(jù),分別得出每組的頻率,即可得出頻率分布表,進而可畫出頻率分布直方圖;
(II)根據(jù)頻率分布表,估計成績在85分以下的頻數(shù),進而可確定對應的頻率;
(III)根據(jù)眾數(shù),中位數(shù),以及平均數(shù)的概念,結(jié)合頻率分布直方圖,即可分別計算出結(jié)果.
(I)由題意可得,頻率分布表如下:
分組 | 頻數(shù) | 頻率 |
2 | ||
3 | ||
10 | ||
15 | ||
12 | ||
8 | ||
合計 | 50 |
作出頻率分布直方圖如下:
(II)由頻率分布表可知,成績在分以下的頻數(shù)為,
所以,估計成績在分以下的學生比例為;
(III)由頻率分布直方圖可知,矩形最高的一組為,所以眾數(shù)為;
從左開始前三個小矩形的面積之和為,所以中位數(shù)位于第四組,
設中位數(shù)為,則,解得:,
所以中位數(shù)約為;
平均數(shù)為:.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 命題“若,則”的逆否命題為“若,則”
B. 若命題 “, ”,則命題的否定為“, ”
C. “”是“”的充分不必要條件
D. “”是“直線與直線互為垂直”的充要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知.
(1)當時,解不等式;
(2)若關于的方程的解集中恰好有一個元素,求實數(shù)的值;
(3)設,若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】點E、F、G分別是正方體ABCD-A1B1C1D1的棱AB、BC、B1C1的中點,如圖所示,則下列命題中的真命題是________(寫出所有真命題的編號).
①以正方體的頂點為頂點的三棱錐的四個面中最多只有三個面是直角三角形;
②過點F、D1、G的截面是正方形;
③點P在直線FG上運動時,總有AP⊥DE;
④點Q在直線BC1上運動時,三棱錐A-D1QC的體積是定值;
⑤點M是正方體的平面A1B1C1D1內(nèi)的到點D和C1距離相等的點,則點M的軌跡是一條線段.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD為直角梯形,AD//BC,且,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E為AD的中點,△PAD為等邊三角形,M是棱PC上的一點,設(M與C不重合).
(1)求證:CD⊥DP;
(2)若PA∥平面BME,求k的值;
(3)若二面角M﹣BE﹣A的平面角為150°,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為實數(shù)).
(1)當時,判斷函數(shù)的單調(diào)性,并用定義證明;
(2)根據(jù)的不同取值,討論的奇偶性,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)滿足,且.
(1)求函數(shù)的解析式;
(2)求在區(qū)間上的最大值和最小值;
(3)當時,恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com