【題目】已知橢圓的離心率為,點(diǎn)A為橢圓的右頂點(diǎn),點(diǎn)B為橢圓的上頂點(diǎn),點(diǎn)F為橢圓的左焦點(diǎn),且的面積是

Ⅰ.求橢圓C的方程;

Ⅱ.設(shè)直線與橢圓C交于P、Q兩點(diǎn),點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為不重合),則直線x軸交于點(diǎn)H,求面積的取值范圍.

【答案】I. II.

【解析】

I.根據(jù)離心率和以及可求得的值,從而得到橢圓方程;II.聯(lián)立直線方程與橢圓方程,假設(shè)坐標(biāo),可得坐標(biāo)及根與系數(shù)的關(guān)系式:,;根據(jù)直線的兩點(diǎn)式方程表示出點(diǎn)坐標(biāo),代入根與系數(shù)關(guān)系式可求得,從而將所求面積變?yōu)椋?/span>,換元整理后得到,利用求得所求面積的取值范圍.

I.得:

,解得:,則

橢圓的標(biāo)準(zhǔn)方程為:

II. 不重合可知:

聯(lián)立,整理可得:

設(shè),,則

直線的方程為:

,解得:

即直線軸交點(diǎn)為:

,

,則

當(dāng)時(shí),單調(diào)遞增,則

,又

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與圓有且僅有兩個(gè)公共點(diǎn),點(diǎn)、、分別是橢圓上的動(dòng)點(diǎn)、左焦點(diǎn)、右焦點(diǎn),三角形面積的最大值是

(1)求橢圓的方程;

(2)若點(diǎn)在橢圓第一象限部分上運(yùn)動(dòng),過(guò)點(diǎn)作圓的切線,過(guò)點(diǎn)的垂線,求證:交點(diǎn)的縱坐標(biāo)的絕對(duì)值為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,已知,,.

(1)求證:;

(2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中, 相交于點(diǎn),點(diǎn)在線段上,,且平面

(1)求實(shí)數(shù)的值;

(2)若, 求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了解社區(qū)群眾體育活動(dòng)的開(kāi)展情況,擬采用分層抽樣的方法從A,B,C三個(gè)行政區(qū)抽出6個(gè)社區(qū)進(jìn)行調(diào)查.已知A,B,C行政區(qū)中分別有12,18,6個(gè)社區(qū).

1)求從A,B,C三個(gè)行政區(qū)中分別抽取的社區(qū)個(gè)數(shù);

2)若從抽得的6個(gè)社區(qū)中隨機(jī)的抽取2個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求抽取的2個(gè)社區(qū)中至少有一個(gè)來(lái)自A行政區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接2019年全國(guó)文明城市評(píng)比,某市文明辦對(duì)市民進(jìn)行了一次文明創(chuàng)建知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查.每一位市民有且僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參加問(wèn)卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示:

組別

頻數(shù)

25

150

200

250

225

100

50

(1)由頻數(shù)分布表可以認(rèn)為,此次問(wèn)卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表),請(qǐng)利用正態(tài)分布的知識(shí)求

(2)在(1)的條件下,文明辦為此次參加問(wèn)卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

(i)得分不低于的可以獲贈(zèng)2次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)1次隨機(jī)話費(fèi);

(ii)每次獲贈(zèng)的隨機(jī)話費(fèi)和對(duì)應(yīng)的概率為:

獲贈(zèng)的隨機(jī)話費(fèi)(單位:元)

20

40

概率

現(xiàn)市民小王要參加此次問(wèn)卷調(diào)查,記(單位:元)為該市民參加問(wèn)卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列及數(shù)學(xué)期望.

附:①

②若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:

直徑

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計(jì)

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值,用樣本估計(jì)總體.

(1)將直徑小于等于或直徑大于的零件認(rèn)為是次品,從設(shè)備的生產(chǎn)流水線上隨意抽取3個(gè)零件,計(jì)算其中次品個(gè)數(shù)的數(shù)學(xué)期望;

(2)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的概率):①;②;③.評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部不滿足,則等級(jí)為丁,試判斷設(shè)備的性能等級(jí)并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一盒子中有8個(gè)大小完全相同的小球,其中3個(gè)紅球,2個(gè)白球,3個(gè)黑球.

)若不放回地從盒中連續(xù)取兩次球,每次取一個(gè),求在第一次取到紅球的條件下,第二次也取到紅球的概率;

)若從盒中任取3個(gè)球,求取出的3個(gè)球中紅球個(gè)數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖,對(duì)于任一給定的四面體,找出依次排列的四個(gè)相互平行的平面,,使得,且其中每相鄰兩個(gè)平面間的距離都相等;

2)給定依次排列的四個(gè)相互平行的平面,,,其中每相鄰兩個(gè)平面間的距離為1,若一個(gè)正四面體的四個(gè)頂點(diǎn)滿足:,求該正四面體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案