7.已知向量$\overrightarrow{m}$=(cos2x,$\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}cosx$),$\overrightarrow{n}$=(1,$\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx$),設(shè)函數(shù)f(x)=$\overrightarrow{m}•\overrightarrow{n}$.
(Ⅰ)求函數(shù)f(x)取得最大值時x取值的集合;
(Ⅱ)設(shè)A,B,C為銳角三角形ABC的三個內(nèi)角,若cosB=$\frac{3}{5}$,f(C)=-$\frac{1}{4}$,求sinA的值.

分析 (Ⅰ)由向量和三角函數(shù)公式可得f(x)=$\frac{\sqrt{3}}{2}$cos(2x+$\frac{π}{6}$)+$\frac{1}{2}$,易得最值和x集合;
(Ⅱ)由題意和同角三角函數(shù)基本關(guān)系可得sinB,再由前面所求可得C=$\frac{π}{3}$,代入sinA=sin($\frac{2π}{3}$-B)=$\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB,計算可得.

解答 解:(Ⅰ)∵向量$\overrightarrow{m}$=(cos2x,$\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}cosx$),$\overrightarrow{n}$=(1,$\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx$),
∴函數(shù)f(x)=$\overrightarrow{m}•\overrightarrow{n}$=cos2x+($\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}cosx$)2
=cos2x+$\frac{3}{4}$sin2x+$\frac{1}{4}$cos2x-$\frac{\sqrt{3}}{2}$sinxcosx
=$\frac{3}{4}$cos2x-$\frac{\sqrt{3}}{4}$sin2x+$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$cos(2x+$\frac{π}{6}$)+$\frac{1}{2}$
故當(dāng)cos(2x+$\frac{π}{6}$)=1時,函數(shù)f(x)取得最大值$\frac{\sqrt{3}+1}{2}$,
此時2x+$\frac{π}{6}$=2kπ,解得x=kπ-$\frac{π}{12}$,k∈Z,
故x取值的集合為{x|x=kπ-$\frac{π}{12}$,k∈Z};
(Ⅱ)∵A,B,C為銳角三角形ABC的三個內(nèi)角,且cosB=$\frac{3}{5}$,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$,又f(C)=$\frac{\sqrt{3}}{2}$cos(2C+$\frac{π}{6}$)+$\frac{1}{2}$=-$\frac{1}{4}$,
∴cos(2C+$\frac{π}{6}$)=-$\frac{\sqrt{3}}{2}$,∴2C+$\frac{π}{6}$=$\frac{5π}{6}$,解得C=$\frac{π}{3}$,
∴sinA=sin($\frac{2π}{3}$-B)=$\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB
=$\frac{\sqrt{3}}{2}×\frac{3}{5}+\frac{1}{2}×\frac{4}{5}$=$\frac{4+3\sqrt{3}}{10}$

點(diǎn)評 本題考查解三角形,涉及三角函數(shù)的化簡和同角三角函數(shù)基本關(guān)系以及向量的知識,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:?x>1,log${\;}_{\frac{1}{2}}$x>0,命題q:?x∈R,x3≥3x.則下列命題為真命題的是( 。
A.p∨qB.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)y=lg(cos2x)的單調(diào)增區(qū)間為($-\frac{π}{4}+kπ,kπ$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,A、B、C所對三邊分別為a、b、c,且B(-1,0)、C(1,0),求滿足b>a>c,b、a、c成等差數(shù)列時.頂點(diǎn)A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知四棱錐P-ABCD的底面為菱形,且PA⊥平面ABCD,M為四邊形ABCD所在平面內(nèi)一點(diǎn),E為PC的中點(diǎn),PB=2,則(1)PC⊥BD;(2)直線BE∥平面PAD;(3)點(diǎn)M到直線PA與BC的距離相等,則點(diǎn)M的軌跡方程為拋物線;(4)VP-ABCD的最大值為$\frac{16\sqrt{3}}{27}$,以上結(jié)論正確的是(1)(3)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線x+y+2=0與圓(x+1)2+(y-1)2=16的位置關(guān)系為相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知角α屬于第二象限,且|cos$\frac{a}{2}$|=-cos$\frac{a}{2}$,求角$\frac{a}{2}$的終邊所在的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.當(dāng)x∈[0,$\frac{π}{4}$]時,函數(shù)y=tan(2x-$\frac{π}{4}$)的值域為[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=$\frac{x+m}{{x}^{2}+1}$是定義在R上的奇函數(shù),則f(1)+f(-1)+f(m)的值為0.

查看答案和解析>>

同步練習(xí)冊答案