【題目】關(guān)于方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m),m∈R所表示的曲線C的性狀,下列說法正確的是(
A.對于m∈(1,3),曲線C為一個(gè)橢圓
B.m∈(﹣∞,1)∪(3,+∞)使曲線C不是雙曲線
C.對于m∈R,曲線C一定不是直線
D.m∈(1,3)使曲線C不是橢圓

【答案】D
【解析】解:對于方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m),①當(dāng)m=1時(shí),方程即2y2=0,即 y=0,表示x軸;②當(dāng)m=3時(shí),方程即2x2=0,即 x=0,表示y軸;③當(dāng)m≠1,且 m≠3時(shí),方程即 =1,若3﹣m=m﹣1,即m=2時(shí),方程即為圓:x2+y2=1,表示一個(gè)單位圓;
若(3﹣m)(m﹣1)<0,即m>3或者m<1時(shí),方程表示雙曲線;
若(3﹣m)(m﹣1)>0且3﹣m≠m﹣1,即1<m<3,且m≠2時(shí),方程表示橢圓.
綜合可得:當(dāng)m=1,方程表示x軸,當(dāng)m=3;方程表示y軸;當(dāng)m=2時(shí),方程表示圓;當(dāng)1<m<3且不等于2時(shí),方程表示橢圓;
當(dāng)m>3或者m<1時(shí),方程表示雙曲線.
故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱中, ,側(cè)面底面 的中點(diǎn), .

(Ⅰ)求證: ;

(Ⅱ)求直線與平面所成線面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,橢圓C的長軸長為4.
(1)求橢圓C的方程;
(2)已知直線l:y=kx+ 與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國上是世界嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過的部分按平價(jià)收費(fèi),超過的部分按議價(jià)收費(fèi),為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 的值;

(Ⅱ)已知該市有80萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

(Ⅲ)若該市政府希望使的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩個(gè)盒子中分別裝有標(biāo)號為1、2、3、4的四個(gè)球,現(xiàn)從甲、乙兩個(gè)盒子中各取出1個(gè)球,每個(gè)小球被取出的可能性相等.
(Ⅰ)求取出的兩個(gè)球上標(biāo)號為相鄰整數(shù)的概率;
(Ⅱ)求取出的兩個(gè)球上標(biāo)號之和能被3整除的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知直線上兩點(diǎn)的極坐標(biāo)分別為.

(1)設(shè)為線段上的動點(diǎn),求線段取得最小值時(shí),點(diǎn)的直角坐標(biāo);

(2)求以為為直徑的圓的參數(shù)方程,并求在(1)條件下直線與圓相交所得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}、{bn}都是公差為1的等差數(shù)列,其首項(xiàng)分別為a1、b1 , 且a1+b1=5,a1 , b1∈N* , 設(shè)cn=a ,則數(shù)列{cn}的前10項(xiàng)和等于(
A.55
B.70
C.85
D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是(
A.當(dāng)x>0且x≠1時(shí),lgx ≥2
B.6 的最大值是2
C. 的最小值是2
D.當(dāng)x∈(0,π)時(shí),sinx ≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)性;

(3)若函數(shù)處取得極小值,設(shè)此時(shí)函數(shù)的極大值為,證明:.

查看答案和解析>>

同步練習(xí)冊答案