20.已知集合$A=\left\{{x\left|{\frac{{{x^2}-x-6}}{x+1}≤0}\right.}\right\}$,集合B={x||x+2a|≤a+1,a∈R}.
(1)求集合A與集合B;
(2)若A∩B=B,求實數(shù)a的取值范圍.

分析 (1)求出A中不等式的解集確定出A,表示出B中不等式的解集確定出B即可;
(2)由A與B的交集為B,得到B為A的子集,確定出a的范圍即可.

解答 解:(1)由A中方程變形得:(x-3)(x+2)(x+1)≤0,
解得:x≤-2或-1<x≤3,即A=(-∞,-2]∪(-1,3],
當(dāng)a+1<0時,即a<-1時,B=∅;
當(dāng)a+1≥0時,即a≥-1時,B=[-3a-1,-a+1];
(2)∵A∩B=B,
∴B⊆A,
當(dāng)a<-1時,B=∅滿足題意;
當(dāng)a≥-1時,B=[-3a-1,-a+1],
此時有:-a+1≤-2或$\left\{\begin{array}{l}-1<-3a-1\\-a+1≤3\end{array}\right.$,
解得,a≥3或-1≤a<0,
綜上所述,a∈(-∞,0)∪[3,+∞).

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域為[0,+∞),若關(guān)于x的不等式f(x)<m的解集為(c,c+2$\sqrt{2}$).
(1)求實數(shù)m的值;
(2)若x>1,y>0,x+y=m,求$\frac{1}{x-1}$+$\frac{2}{y}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.化簡$\sqrt{{{(π-4)}^2}}+\root{3}{{{{(π-5)}^3}}}$的結(jié)果是(  )
A.2π-9B.9-2πC.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.為了了解某同學(xué)的數(shù)學(xué)學(xué)習(xí)情況,對他的6次數(shù)學(xué)測試成績(滿分100分)進(jìn)行統(tǒng)計,作出的莖葉圖如圖所示,則該同學(xué)數(shù)學(xué)成績的中位數(shù)為84.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知集合A={y|y=x2-2x-3},集合B={y|y=-x2+2x+13},則A∩B=[-4,14].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.有1999個集合,每個集合有45個元素,任意兩個集合的并集有89個元素,問此1999個集合的并集有多少個元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知四組函數(shù):①$y=\sqrt{x^2}-1$與$y=\root{3}{x^3}-1$;②f(x)=x0與$g(x)=\frac{1}{x^0}$;③$y=\frac{x^2}{|x|}$與$y=\left\{{\begin{array}{l}{t,t>0}\\{-t,t<0}\end{array}}\right.$;④f(x)=2x,D={0,1,2,3}與$g(x)=\frac{1}{6}{x^3}+\frac{5}{6}x+1,D=\left\{{0,1,2,3}\right\}$.表示同一函數(shù)的是②③.(寫出所有符合要求的函數(shù)組的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題中真命題是(  )
A.若$\overrightarrow{a}$與$\overrightarrow$互為負(fù)向量,則$\overrightarrow{a}$+$\overrightarrow$=0B.若 $\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow$
C.若k為實數(shù)且k$\overrightarrow{a}$=$\overrightarrow{0}$,則k=0或$\overrightarrow{a}$=$\overrightarrow{0}$D.若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$在$\overrightarrow$上的投影為|$\overrightarrow{a}$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為G(x)(萬元),其中固定成本為2.8萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本).銷售收入R(x)(萬元)滿足R(x)=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x(0≤x≤5)}\\{0.05x+11(x>5)}\end{array}\right.$,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)y=f(x)的解析式(利潤=銷售收入-總成本);
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

查看答案和解析>>

同步練習(xí)冊答案