設(shè)命題p:“已知x2-mx+1>0對(duì)?x∈R恒成立”,命題q:“不等式x2<9-m2有實(shí)數(shù)解”,若¬p且q為真命題,求實(shí)數(shù)m的取值范圍.
考點(diǎn):復(fù)合命題的真假
專題:簡(jiǎn)易邏輯
分析:先求出命題p,q為真命題時(shí)m的取值范圍,根據(jù)¬p且q為真命題,知道p假q真,所以寫(xiě)出p假時(shí)的m的取值,q真時(shí)m的取值,求這兩個(gè)取值的交集即可.
解答: 解:若命題p真:△=m2-4<0,解得-2<m<2;若命題q真:9-m2>0,解得-3<m<3;
∵?p且q為真∴p假q真 
m≤-2,或m≥2
-3<m<3
,解得-3<m≤-2,或2≤m<3;
∴實(shí)數(shù)m的取值范圍為(-3,-2]∪[2,3).
點(diǎn)評(píng):考查一元二次不等式的解和判別式△的關(guān)系,¬p∧q為真時(shí),p,q的真假情況,交集的運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a1=1,a5=9.
(1)求a3
(2)記bn=2an,證明:數(shù)列{bn}是等比數(shù)列;
(3)對(duì)于(2)中的Sn,求函數(shù)f(n)=Sn-t•2n(n∈N*,t為常數(shù)且t∈[0,8])的最小值g(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一扇形的圓心角為α,半徑為R,弧長(zhǎng)為l.
(1)若α=60°,R=10cm,求扇形的弧長(zhǎng)l.
(2)若扇形的周長(zhǎng)為20cm,當(dāng)扇形的圓心角α為多少弧度時(shí),這個(gè)扇形的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓C經(jīng)過(guò)點(diǎn)A(2,0)和點(diǎn)B(3,1),且圓心C在直線x-y-3=0上,過(guò)點(diǎn)P(0,1)且斜率為k的直線與圓C相交于不同的兩點(diǎn).
(1)求圓C的方程,同時(shí)求出k的取值范圍;
(2)是否存在常數(shù)k,使得向量
OM
+
ON
PC
共線?如果存在,求k值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z=(m2-3m+2)+(m-2)i表示(1)實(shí)數(shù)?(2)虛數(shù)?(3)純虛數(shù)?(4)點(diǎn)在第四象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓心在第二象限內(nèi),半徑為2
5
的圓O1與x軸交于(-5,0)和(3,0)兩點(diǎn).
(1)求圓O1的方程;
(2)求圓O1的過(guò)點(diǎn)A(1,6)的切線方程;
(3)已知點(diǎn)N(9,2)在(2)中的切線上,過(guò)點(diǎn)A作O1N的垂線,垂足為M,點(diǎn)H為線段AM上異于兩個(gè)端點(diǎn)的動(dòng)點(diǎn),以點(diǎn)H為中點(diǎn)的弦與圓交于點(diǎn)B,C,過(guò)B,C兩點(diǎn)分別作圓的切線,兩切線交于點(diǎn)P,求直線PO1的斜率與直線PN的斜率之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為援助汶川災(zāi)后重建,對(duì)某項(xiàng)工程進(jìn)行競(jìng)標(biāo),共有4家企業(yè)參與競(jìng)標(biāo).其中A企業(yè)來(lái)自遼寧省,B、C兩家企業(yè)來(lái)自福建省,D企業(yè)來(lái)自河南。隧(xiàng)工程需要兩家企業(yè)聯(lián)合施工,假設(shè)每家企業(yè)中標(biāo)的概率相同.
(1)企業(yè)D中標(biāo)的概率是多少?
(2)在中標(biāo)的企業(yè)中,至少有一家來(lái)自福建省的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
x3-x2-3x.
(1)求f(x)在[-3,3]上的最大值;
(2)設(shè)方程f(x)=a有且僅有一個(gè)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-2≤x≤2},B={x|-1≤x≤1},對(duì)應(yīng)法則f:x→y=ax,若在f的作用下能夠建立從A到B的映射,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案