【題目】已知拋物線E∶y2=2px(p>0)的焦點(diǎn)為F,過(guò)F且斜率為1的直線交E于A,B兩點(diǎn),線段AB的中點(diǎn)為M,其垂直平分線交x軸于點(diǎn)C,MN⊥y軸于點(diǎn)N.若四邊形CMNF的面積等于7,則E的方程為( )
A.y2=xB.y2=2x
C.y2=4xD.y2=8x
【答案】C
【解析】
聯(lián)立方程組求出各點(diǎn)的坐標(biāo),根據(jù)四邊形CMNF的面積等于,求得的值,即可得到拋物線的方程,得到答案.
由題意知F,則直線AB的方程為y=x-.如圖,四邊形CMNF為梯形,且MN∥FC,
設(shè)A(x1,y1),B(x2,y2),由得y2-2py-p2=0,所以y1+y2=2p,
所以x1+x2=y1+y2+p=3p,所以xM==,yM==p,
因?yàn)?/span>MC⊥AB,所以kMC=-1,
所以直線MC的方程為y-p=-,即y=-x+,所以xC=,
所以四邊形CMNF的面積為(xM+|FC|)·yM=·p=7,得p=2,
所以拋物線E的方程為y2=4x,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列問(wèn)題中,是不相等的正數(shù),比較的表達(dá)式,下列選項(xiàng)正確的是( )
問(wèn)題甲:一個(gè)直徑寸的披薩和一個(gè)直徑 寸的披薩,面積和等于兩個(gè)直徑都是寸的披薩;
問(wèn)題乙:某人散步,第一圈的速度是,第二圈的速度是,這兩圈的平均速度為;
問(wèn)題丙:將一物體放在兩臂不等長(zhǎng)的天平測(cè)量,放在左邊時(shí)砝碼質(zhì)量為(天平平衡),放在右邊時(shí)左邊砝碼質(zhì)量為,物體的實(shí)際質(zhì)量為.
A.B.C.D.互不相同
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C; y2 =2x的焦點(diǎn)為F,準(zhǔn)線為l, P為拋物線C上異于頂點(diǎn)的動(dòng)點(diǎn).
(1)過(guò)點(diǎn)P作準(zhǔn)線1的垂線,垂足為H,若△PHF與△POF的面積之比為2:1,求點(diǎn)P的坐標(biāo);
(2)過(guò)點(diǎn)M(,0)任作一條直線 m與拋物線C交于不同的兩點(diǎn)A, B.若兩直線PA, PB 斜率之和為2,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,是某海灣旅游區(qū)的一角,其中,為了營(yíng)造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會(huì)決定在直線海岸和上分別修建觀光長(zhǎng)廊和AC,其中是寬長(zhǎng)廊,造價(jià)是元/米,是窄長(zhǎng)廊,造價(jià)是元/米,兩段長(zhǎng)廊的總造價(jià)為120萬(wàn)元,同時(shí)在線段上靠近點(diǎn)的三等分點(diǎn)處建一個(gè)觀光平臺(tái),并建水上直線通道(平臺(tái)大小忽略不計(jì)),水上通道的造價(jià)是元/米.
(1) 若規(guī)劃在三角形區(qū)域內(nèi)開(kāi)發(fā)水上游樂(lè)項(xiàng)目,要求的面積最大,那么和的長(zhǎng)度分別為多少米?
(2) 在(1)的條件下,建直線通道還需要多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)S、T是R的兩個(gè)非空子集,如果函數(shù)滿足:①;②對(duì)任意,,當(dāng)時(shí),恒有,那么稱函數(shù)為集合S到集合T的“保序同構(gòu)函數(shù)”.
(1)試寫(xiě)出集合到集合R的一個(gè)“保序同構(gòu)函數(shù)”;
(2)求證:不存在從集合Z到集合Q的“保序同構(gòu)函數(shù)”;
(3)已知是集合到集合的“保序同構(gòu)函數(shù)”,求s和t的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】各項(xiàng)均為正數(shù)的數(shù)列{an}的首項(xiàng),前n項(xiàng)和為Sn,且Sn+1+Sn=λ..
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=λnan,求{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中國(guó)足球超級(jí)聯(lián)賽某一季的收官階段中,廣州恒大淘寶、北京中赫國(guó)安、上海上港、山東魯能泰山分別積分59分、58分、56分、50分,四家俱樂(lè)部都有機(jī)會(huì)奪冠.A,B,C三個(gè)球迷依據(jù)四支球隊(duì)之前比賽中的表現(xiàn),結(jié)合自已的判斷,對(duì)本次聯(lián)賽的冠軍進(jìn)行如下猜測(cè):猜測(cè)冠軍是北京中赫國(guó)安或山東魯能泰山;猜測(cè)冠軍一定不是上海上港和山東魯能泰山;猜測(cè)冠軍是廣州恒大淘寶或北京中赫國(guó)安.聯(lián)賽結(jié)束后,發(fā)現(xiàn)A,B,C三人中只有一人的猜測(cè)是正確的,則冠軍是( )
A.廣州恒大淘寶B.北京中赫國(guó)安C.上海上港D.山東魯能泰山
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓 的左右焦點(diǎn)分別為的、,離心率為;過(guò)拋物線焦點(diǎn)的直線交拋物線于、兩點(diǎn),當(dāng)時(shí), 點(diǎn)在軸上的射影為。連結(jié)并延長(zhǎng)分別交于、兩點(diǎn),連接; 與的面積分別記為, ,設(shè).
(Ⅰ)求橢圓和拋物線的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com