10.某幾何體的三視圖如圖,則此幾何體的體積為(  )
A.6B.34C.44D.54

分析 由三視圖可知幾何體為長方體切去一三棱錐,用長方體體積減去三棱錐的體積即為幾何體體積.

解答 解:由三視圖可知幾何體為長方體切去一三棱錐,直觀圖如圖所示:

V長方體=4×3×5=60,V三棱錐=$\frac{1}{3}$×$\frac{1}{2}$×3×4×3=6,
∴V=V長方體-V三棱錐=60-6=54.
故選D.

點評 本題考查了幾何體的三視圖,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(2-a)x-12,x≤7}\\{(a+2)^{x-6},x>7}\end{array}\right.$是R上的增函數(shù).
(I)求實數(shù)a的取值范圍;
(Ⅱ)若g(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax(x∈[1,4])的最小值為-$\frac{16}{3}$.試比較f{(g(x))與f($\frac{10}{3}$)的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.以直角坐標系的原點為極點,x軸的正半軸為極軸,并在兩坐標系中取相同的長度.已知曲線C1的極坐標方程為ρ=2cosθ,將曲線C1向左平移一個單位,再將其橫坐標伸長到原來的2倍得到曲線C2
(1)求曲線C2的直角坐標方程;
(2)過點P(1,2)的直線與曲線C2交于A、B兩點,求|PA||PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.分層抽樣適合的總體是( 。
A.總體容量較多B.樣本容量較多
C.總體中個體有差異D.任何總體

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若函數(shù)y=sin(ωx-φ)(ω>0,|φ|<π)在區(qū)間$[{-\frac{π}{2},π}]$的簡圖如圖所示,則ω,φ的值分別是( 。
A.$ω=2,φ=\frac{π}{3}$B.$ω=2,φ=-\frac{2π}{3}$C.$ω=\frac{1}{2},φ=\frac{π}{3}$D.$ω=\frac{1}{2},φ=-\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在銳角△ABC中,a,b,c分別為∠A,∠B,∠所對的邊,若向量$\overrightarrow{m}$=(3,-sinA),$\overrightarrow{n}$=(a,5c),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
(1)求$\frac{sin2C}{sin2C+co{s}^{2}C}$的值;
(2)若c=4,且a+b=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列兩個函數(shù)表示相等函數(shù)的是( 。
A.f(x)=lgx2,g(x)=2lgxB.f(x)=1,g(x)=x0
C.$f(x)=\sqrt{x^2},g(x)={(\sqrt{x})^2}$D.$f(x)=x,g(x)={log_a}{a^x}(a>0且a≠1)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.《中華人民共和國個人所得稅法》規(guī)定,公民全月工資、薪金所得不超過3500元的部分不必納稅,超過3500的部分為全月應(yīng)納稅所得額.此項稅款按下表分段累計計算:
全月應(yīng)納稅所得額稅率(%)
不超過1500元的部分3
超過1500元至4500元的部分10
超過4500元至9000元的部分20
凱里市某市民10月份應(yīng)交納稅額為256元,那么他當月的工資、薪金所得是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在二項式($\root{3}{{x}^{2}}$-$\frac{1}{2}$)n的展開式中,只有第5項的二項式系數(shù)最大,則n=8;展開式中的第4項為-7${x}^{\frac{10}{3}}$.

查看答案和解析>>

同步練習冊答案