分析 (1)由題意及平面向量數(shù)量積的運(yùn)算可得3a=5csinA,由正弦定理化簡(jiǎn)可得sinC,由同角三角函數(shù)關(guān)系式可求cosC,利用二倍角公式即可求值得解.
(2)由(1)及余弦定理可求ab的值,利用三角形面積公式即可得解.
解答 解:(1)∵$\overrightarrow{m}$=(3,-sinA),$\overrightarrow{n}$=(a,5c),且$\overrightarrow{m}$•$\overrightarrow{n}$=0.
∴3a=5csinA,
∴3sinA=5sinCsinA,
∵sinA≠0,∴sinC=$\frac{3}{5}$.
∵△ABC為銳角三角形,∴cosC=$\frac{4}{5}$.
∴$\frac{sin2C}{sin2C+co{s}^{2}C}$=$\frac{2sinC•cosC}{2sinC•cosC+co{s}^{2}C}$=$\frac{2sinC}{2sinC+cosC}$=$\frac{2×\frac{3}{5}}{2×\frac{3}{5}+\frac{4}{5}}$=$\frac{3}{5}$…(6分)
(2)由(1)可知sinC=$\frac{3}{5}$,cosC=$\frac{4}{5}$,
∵c=4,a+b=5
∴c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC,
∴16=25-2ab-2ab×$\frac{4}{5}$,∴ab=$\frac{5}{2}$,
∴S△ABC=$\frac{1}{2}$=$\frac{1}{2}$absinC=$\frac{1}{2}×\frac{5}{2}×\frac{3}{5}$=$\frac{3}{4}$…(12分)
點(diǎn)評(píng) 本題主要考查了平面向量數(shù)量積的運(yùn)算,正弦定理,同角三角函數(shù)關(guān)系式,二倍角公式,余弦定理,三角形面積公式的綜合應(yīng)用,考查了計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c<a<b | B. | c<b<a | C. | a<b<c | D. | a<c<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com