【題目】在平面直角坐標(biāo)系xOy中,己知橢圓C的左、右頂點(diǎn)為AB,右焦點(diǎn)為F.過(guò)點(diǎn)A且斜率為k)的直線交橢圓C于另一點(diǎn)P.

1)求橢圓C的離心率;

2)若,求的值;

3)設(shè)直線l:,延長(zhǎng)AP交直線l于點(diǎn)Q,線段BO的中點(diǎn)為E,求證:點(diǎn)B關(guān)于直線EF的對(duì)稱點(diǎn)在直線PF上。

【答案】(1)(2)(3)詳見解析

【解析】

1)根據(jù)橢圓的方程,結(jié)合橢圓離心率的求法,即可求出結(jié)果;

2)先由題意,得到直線AP的方程為代入橢圓方程,求出點(diǎn)P的坐標(biāo),表示出,進(jìn)而可得出結(jié)果;

3)由直線AP的方程與直線l的方程聯(lián)立,求出,表示出直線EF的斜率,再由結(jié)合韋達(dá)定理,以及題中條件,表示出直線PF的斜率,再由題意,即可證明結(jié)論成立.

1)因?yàn)闄E圓C,

所以,,.

,所以,

所以橢圓C的離心率.

2)因?yàn)橹本AP的斜率為,且過(guò)橢圓C的左頂點(diǎn),

所以直線AP的方程為.

代入橢圓C的方程

,即,

解得(舍去),

代入,得,

所以點(diǎn)P的坐標(biāo)為.

又橢圓C的右頂點(diǎn)B2t,0),

所以,,

所以.

3)直線AP的方程為,

代入,得,所以.

因?yàn)?/span>E為線段BQ的中點(diǎn),所以

因?yàn)榻裹c(diǎn)F的坐標(biāo)為(t,0),

所以直線EF的斜率.

聯(lián)立y得,.

由于,

所以

所以點(diǎn)P的坐標(biāo)為,

所以直線PF的斜率.

而直線EF的斜率為2k,

若設(shè),則有,即,

所以點(diǎn)B關(guān)于直線EF的對(duì)稱點(diǎn)在直線PF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形為直角梯形,,,,中點(diǎn),,交于點(diǎn),沿將四邊形折起,連接

(1)求證:平面;

(2)若平面平面

(I)求二面角的平面角的大;

(II)線段上是否存在點(diǎn),使平面,若存在,求出的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家舉行大型的促銷活動(dòng),經(jīng)測(cè)算某產(chǎn)品當(dāng)促銷費(fèi)用為萬(wàn)元時(shí),銷售量萬(wàn)件滿足(其中, 為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品萬(wàn)件還需投入成本萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為萬(wàn)元/萬(wàn)件.

(1)將該產(chǎn)品的利潤(rùn)萬(wàn)元表示為促銷費(fèi)用萬(wàn)元的函數(shù);

2)促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐 中,底面 是邊長(zhǎng)為 2 的正三角形,頂點(diǎn) 在底面上的射影為的中心,若的中點(diǎn),且直線與底面所成角的正切值為,則三棱錐外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃銷售某種食品,現(xiàn)邀請(qǐng)甲、乙兩個(gè)商家進(jìn)場(chǎng)試銷10天.兩個(gè)商家向超市提供的日返利方案如下:甲商家每天固定返利60元,且每賣出一件食品商家再返利3元;乙商家無(wú)固定返利,賣出不超出30件(含30件)的食品,每件食品商家返利5元,超出30件的部分每件返利10元. 經(jīng)統(tǒng)計(jì),試銷這10天兩個(gè)商家每天的銷量如圖所示的莖葉圖(莖為十位數(shù)字,葉為個(gè)位數(shù)字):

(1)現(xiàn)從甲商家試銷的10天中隨機(jī)抽取兩天,求這兩天的銷售量都小于30件的概率;

(2)根據(jù)試銷10天的數(shù)據(jù),將頻率視作概率,用樣本估計(jì)總體,回答以下問(wèn)題:

①記商家乙的日返利額為X(單位:元),求X的分布列和數(shù)學(xué)期望;

②超市擬在甲、乙兩個(gè)商家中選擇一家長(zhǎng)期銷售,如果僅從日返利額的數(shù)學(xué)期望考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為超市作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩定點(diǎn),若對(duì)于實(shí)數(shù),函數(shù))的圖像上有且僅有6個(gè)不同的點(diǎn),使得成立,則的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四樓錐中,,,.

1)求的長(zhǎng).

2)求直線與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題,;命題關(guān)于的方程有兩個(gè)相異實(shí)數(shù)根.

1)若為真命題,求實(shí)數(shù)的取值范圍;

2)若為真命題,為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案