【題目】已知等比數列的公比,且,是、的等差中項.
(1)求數列的通項公式;
(2)試比較與的大小,并說明理由;
(3)若數列滿足,在每兩個與之間都插入個2,使得數列變成了一個新的數列,試問:是否存在正整數,使得數列的前項和?如果存在,求出的值;如果不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】為了鼓勵職員工作熱情,某公司對每位職員一年來的工作業(yè)績按月進行考評打分;年終按照職員的月平均值評選公司最佳職員并給予相應獎勵.已知職員一年來的工作業(yè)績分數的莖葉圖如圖所示:
(1)根據職員的業(yè)績莖葉圖求出他這一年的工作業(yè)績的中位數和平均數;
(2)若記職員的工作業(yè)績的月平均數為.
①已知該公司還有6位職員的業(yè)績在100以上,分別是,,,,,,在這6人的業(yè)績里隨機抽取2個數據,求恰有1個數據滿足(其中)的概率;
②由于職員的業(yè)績高,被公司評為年度最佳職員,在公司年會上通過抽獎形式領取獎金.公司準備了9張卡片,其中有1張卡片上標注獎金為6千元,4張卡片的獎金為4千元,另外4張的獎金為2千元.規(guī)則是:獲獎職員需要從9張卡片中隨機抽出3張,這3張卡片上的金額數之和就是該職員所得獎金.記職員獲得的獎金為(千元),求的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在①;②;③ 這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.
在中,內角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列滿足.
①存在可以生成的數列是常數數列;
②“數列中存在某一項”是“數列為有窮數列”的充要條件;
③若為單調遞增數列,則的取值范圍是;
④只要,其中,則一定存在;
其中正確命題的序號為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已過拋物線:的焦點作直線交拋物線于,兩點,以,兩點為切點作拋物線的切線,兩條直線交于點.
(1)當直線平行于軸時,求點的坐標;
(2)當時,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為橢圓的右焦點,且橢圓長軸的長為4,、是橢圓上的兩點;
(1)求橢圓標準方程;
(2)若直線經過點,且,求直線的方程;
(3)若動點滿足:,直線與的斜率之積為,是否存在兩個定點、,使得為定值?若存在,求出、的坐標;若不存在,請說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列是公差的等差數列,且.
(1)求的前項的和;
(2)若,問在數列中是否存在一項(是正整數),使得成等比數列,若存在,求出的值,若不存在,請說明理由;
(3)若存在自然數(是正整數),滿足,使得成等比數列,求所有整數的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com