【題目】賽季的歐洲冠軍聯(lián)賽八分之一決賽的首回合較量將于北京時(shí)間2018年2月15日3:45在伯納烏球場(chǎng)打響.由羅領(lǐng)銜的衛(wèi)冕冠軍皇家馬德里隊(duì)(以下簡(jiǎn)稱“皇馬”)將主場(chǎng)迎戰(zhàn)剛剛創(chuàng)下歐冠小組賽最多進(jìn)球記錄的法甲領(lǐng)頭羊巴黎圣日曼隊(duì)(以下簡(jiǎn)稱“巴黎”),激烈對(duì)決,一觸即發(fā).比賽分上,下兩個(gè)半場(chǎng)進(jìn)行,現(xiàn)在有加泰羅尼亞每題測(cè)皇馬,巴黎的每半場(chǎng)進(jìn)球數(shù)及概率如表:
0 | 1 | 2 | |
巴黎 | |||
皇馬 |
(1)按照預(yù)測(cè),求巴黎在比賽中至少進(jìn)兩球的概率;
(2)按照預(yù)測(cè),若設(shè)為皇馬總進(jìn)球數(shù),為巴黎總進(jìn)球數(shù),求和的分布列,并判斷和的大小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新高考最大的特點(diǎn)就是取消文理分科,除語(yǔ)文、數(shù)學(xué)、外語(yǔ)之外,從物理、化學(xué)、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對(duì)全文(選擇政治、歷史、地理)的選擇是否與性別有關(guān),從某學(xué)校高一年級(jí)的1000名學(xué)生中隨機(jī)抽取男生,女生各25人進(jìn)行模擬選科.經(jīng)統(tǒng)計(jì),選擇全文的人數(shù)比不選全文的人數(shù)少10人.
(1)估計(jì)在男生中,選擇全文的概率.
(2)請(qǐng)完成下面的列聯(lián)表;并估計(jì)有多大把握認(rèn)為選擇全文與性別有關(guān),并說(shuō)明理由;
選擇全文 | 不選擇全文 | 合計(jì) | |
男生 | 5 | ||
女生 | |||
合計(jì) |
附:,其中.
P() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=x2-2ax+2(a∈R),當(dāng)x∈[-1,+∞)時(shí),恒成立,則a的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班有學(xué)生50人,其中男同學(xué)30人,用分層抽樣的方法從該班抽取5人去參加某社區(qū)服務(wù)活動(dòng).
(1)求從該班男女同學(xué)在各抽取的人數(shù);
(2)從抽取的5名同學(xué)中任選2名談此活動(dòng)的感受,求選出的2名同學(xué)中恰有1名男同學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是正方形.點(diǎn)是棱的中點(diǎn),平面與棱交于點(diǎn).
(1)求證:;
(2)若,且平面平面,試證明平面;
(3)在(2)的條件下,線段上是否存在點(diǎn),使得平面?(直接給出結(jié)論,不需要說(shuō)明理由)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定兩個(gè)命題,P:對(duì)任意實(shí)數(shù)x都有ax2+ax+1>0恒成立;Q:關(guān)于x的方程x2﹣x+a=0有實(shí)數(shù)根;如果“P∧Q”為假,且“P∨Q”為真,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), ,其中…是然對(duì)數(shù)底數(shù).
(1)若函數(shù)有兩個(gè)不同的極值點(diǎn), ,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求使不等式在一切實(shí)數(shù)上恒成立的最大正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖組合體中,三棱柱的側(cè)面是圓柱的軸截面(過圓柱的軸,截圓柱所得的截面),是圓柱底面圓周上不與,重合的一個(gè)點(diǎn).
(1)求證:無(wú)論點(diǎn)如何運(yùn)動(dòng),平面平面;
(2)當(dāng)點(diǎn)是弧的中點(diǎn)時(shí),求四棱錐與圓柱的體積比.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com