【題目】已知函數(shù)為定義在上的奇函數(shù),且當(dāng)時(shí),

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求函數(shù)在區(qū)間 上的最小值.

【答案】(Ⅰ)(Ⅱ)見解析

【解析】

(Ⅰ)利用奇函數(shù)的定義即可求函數(shù)fx)的解析式.(Ⅱ)根據(jù)函數(shù)的解析式,先畫出圖象,然后對(duì)a(要考慮函數(shù)的解析式及單調(diào)性)進(jìn)行分類討論即可求出函數(shù)的值域.

(Ⅰ)當(dāng)x0時(shí),,fx)為奇函數(shù),

則當(dāng)x0時(shí),fx=-f-x=--x2-4x=x2+4x,又f0=0

f(x)解析式為

(Ⅱ)根據(jù)函數(shù)解析式畫出函數(shù)f(x)的圖像,可得f-2=-4,當(dāng)x>0時(shí),由f(x)=-4,解得x=2+2

當(dāng)-2a≤2+2時(shí),觀察圖像可得函數(shù)最小值為f(-2)=-4

當(dāng)a2+2時(shí),函數(shù)在[-22]上單調(diào)遞增,在[2,a]是單調(diào)遞減,由圖像可得函數(shù)的最小值為f(a)=

綜上所述:當(dāng)-2a≤2+2,最小值為-4;當(dāng)a2+2時(shí),最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)是否存在實(shí)數(shù),使函數(shù)上有最小值2?若存在,求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2019·龍泉驛區(qū)一中]交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,且保費(fèi)與上一年車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和費(fèi)率浮動(dòng)比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮

上三個(gè)以及以上年度未發(fā)生有責(zé)任道路交通事故

下浮

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了70輛車齡已滿三年該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

數(shù)量

10

13

7

20

14

6

(1)求一輛普通6座以下私家車在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損6000元,一輛非事故車盈利10000元,且各種投保類型車的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:

①若該銷售商店內(nèi)有7輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選2輛,求這2輛車恰好有一輛為事故車的概率;

②若該銷售商一次性購進(jìn)70輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值(結(jié)果用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1=1,3anan1+an﹣an1=0(n≥2).
(1)求證:數(shù)列{ }等差數(shù)列;
(2)數(shù)列bn=anan+1 , 求數(shù)列bn的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yAsin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在(﹣2π,2π)上的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某輪船公司的一艘輪船每小時(shí)花費(fèi)的燃料費(fèi)與輪船航行速度的平方成正比,比例系數(shù)為輪船的最大速度為15海里小時(shí)當(dāng)船速為10海里小時(shí),它的燃料費(fèi)是每小時(shí)96元,其余航行運(yùn)作費(fèi)用(不論速度如何)總計(jì)是每小時(shí)150元假定運(yùn)行過程中輪船以速度v勻速航行.

k的值;

求該輪船航行100海里的總費(fèi)用燃料費(fèi)航行運(yùn)作費(fèi)用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次項(xiàng)系數(shù)是1的二次函數(shù)

當(dāng),時(shí),求方程的實(shí)根;

設(shè)bc都是整數(shù),若有四個(gè)不同的實(shí)數(shù)根,并且在數(shù)軸上四個(gè)根等距排列,試求二次函數(shù)的解析式,使得其所有項(xiàng)的系數(shù)和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上且以2為周期的偶函數(shù),當(dāng)0≤x≤1,f(x)=x2 . 如果函數(shù)g(x)=f(x)﹣(x+m)有兩個(gè)零點(diǎn),則實(shí)數(shù)m的值為(
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)令,可將已知三角函數(shù)關(guān)系轉(zhuǎn)換成代數(shù)函數(shù)關(guān)系,試寫出函數(shù)的解析式及定義域;

(2)求函數(shù)的最大值;

(3)函數(shù)在區(qū)間內(nèi)是單調(diào)函數(shù)嗎?若是,請(qǐng)指出其單調(diào)性;若不是,請(qǐng)分別指出其單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間(不需要證明).

(參考公式:

查看答案和解析>>

同步練習(xí)冊(cè)答案