【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí), .給出以下命題:

①當(dāng)x<0時(shí),f(x)ex(x1);

②函數(shù)f(x)有五個(gè)零點(diǎn);

③若關(guān)于x的方程f(x)m有解,則實(shí)數(shù)m的取值范圍是f(2)≤mf(2);

④對(duì)x1,x2R,|f(x2)f(x1)|<2恒成立.

其中,正確命題的序號(hào)是________

【答案】①④

【解析】當(dāng)時(shí), ,所以,所以,故①正確;當(dāng)時(shí), ,令,所以,所以上單調(diào)遞減,在上單調(diào)遞增,而在上, ,在上, ,所以上僅有一個(gè)零點(diǎn),由對(duì)稱性可知, 上也有一個(gè)零點(diǎn),又,故該函數(shù)有三個(gè)零點(diǎn),故②錯(cuò)誤;因?yàn)楫?dāng)時(shí), 上單調(diào)遞減,在上單調(diào)遞增,且當(dāng)時(shí), ,當(dāng)時(shí), ,所以當(dāng)時(shí), ,即,由對(duì)稱性可知,當(dāng)時(shí), ,又,故當(dāng)時(shí), ,若關(guān)于的方程有解,則,且對(duì), 恒成立,故③錯(cuò)誤,④正確,故答案為①④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前n項(xiàng)和為,已知pq為常數(shù), ),又, , .

1)求pq的值;

2)求數(shù)列的通項(xiàng)公式;

3)是否存在正整數(shù)m、n,使成立?若存在,求出所有符合條件的有序?qū)崝?shù)對(duì);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線的焦點(diǎn)是橢圓的頂點(diǎn) 為橢圓的左焦點(diǎn)且橢圓經(jīng)過(guò)點(diǎn).

1)求橢圓的方程;

2)過(guò)橢圓的右頂點(diǎn)作斜率為的直線交橢圓于另一點(diǎn)連結(jié)并延長(zhǎng)交橢圓于點(diǎn),當(dāng)的面積取得最大值時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“中國(guó)人均讀書4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國(guó)的11本、法國(guó)的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國(guó)家.”這個(gè)論斷被各種媒體反復(fù)引用,出現(xiàn)這樣的統(tǒng)計(jì)結(jié)果無(wú)疑是令人尷尬的,而且和其他國(guó)家相比,我國(guó)國(guó)民的閱讀量如此之低,也和我國(guó)是傳統(tǒng)的文明古國(guó)、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動(dòng),準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對(duì)小區(qū)內(nèi)看書人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天40名讀書者進(jìn)行調(diào)查,將他們的年齡分成6段: , , , , , 后得到如圖所示的頻率分布直方圖.問(wèn):

(1)估計(jì)在40名讀書者中年齡分布在的人數(shù);

(2)求40名讀書者年齡的平均數(shù)和中位數(shù);

(3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ) 在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:

ωx+φ

0

π

x

Asin(ωx+φ)

0

5

-5

0

(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;

(2)將y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)θ(θ>0)個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)的圖象.若y=g(x)圖象的一個(gè)對(duì)稱中心為,求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)exax2(xR),e2.718 28…為自然對(duì)數(shù)的底數(shù).

(1)求函數(shù)f(x)在點(diǎn)P(0,1)處的切線方程;

(2)若函數(shù)f(x)R上的單調(diào)遞增函數(shù),試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩名同學(xué)準(zhǔn)備參加考試,在正式考試之前進(jìn)行了十次模擬測(cè)試,測(cè)試成績(jī)?nèi)缦拢?/span>

甲:137,121,131,120,129,119,132123,125,133

乙:110,130,147,127146,114,126110,144,146

1畫出甲、乙兩人成績(jī)的莖葉圖,求出甲同學(xué)成績(jī)的平均數(shù)和方差,并根據(jù)莖葉圖,寫出甲、乙兩位同學(xué)平均成績(jī)以及兩位同學(xué)成績(jī)的中位數(shù)的大小關(guān)系的結(jié)論;

2規(guī)定成績(jī)超過(guò)127為“良好”,現(xiàn)在老師分別從甲、乙兩人成績(jī)中各隨機(jī)選出一個(gè)求選出成績(jī)“良好”的個(gè)數(shù)的分布列和數(shù)學(xué)期望.

(注:方差,其中的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線的參數(shù)方程為, 為參數(shù)),曲線的極坐標(biāo)方程為.

(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說(shuō)明曲線的形狀;

(2)若直線經(jīng)過(guò)點(diǎn),求直線被曲線截得的線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)圖象上不同兩點(diǎn), 處切線的斜率分別是 ,規(guī)定為線段的長(zhǎng)度)叫做曲線在點(diǎn)之間的“彎曲度”,給出以下命題:

①函數(shù)圖象上兩點(diǎn)的橫坐標(biāo)分別為1和2,則;

②存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);

③設(shè)點(diǎn) 是拋物線上不同的兩點(diǎn),則;

④設(shè)曲線是自然對(duì)數(shù)的底數(shù))上不同兩點(diǎn), ,且,若恒成立,則實(shí)數(shù)的取值范圍是

其中真命題的序號(hào)為__________.(將所有真命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案