【題目】已知函數(shù)f(x)=|x+2|+|x|
(1)解不等式f(x)≤4;
(2)若對x∈R,恒有f(x)>|3a﹣1|成立,求a的取值范圍.
【答案】
(1)解:函數(shù)f(x)=|x+2|+|x|表示數(shù)軸上的x對應點到﹣2、0對應點的距離之和,
而﹣3和1對應點到﹣2、0對應點的距離之和正好等于4,故不等式f(x)≤4的解集為[﹣3,1].
(2)解:函數(shù)f(x)=|x+2|+|x|表示數(shù)軸上的x對應點到﹣2、0對應點的距離之和,它的最小值為2,.
若對x∈R,恒有f(x)>|3a﹣1|成立,則有2>|3a﹣1|,即﹣2<3a﹣1<2,求得﹣ <a<1,
故a的取值范圍為(﹣ ,1)
【解析】(1)由條件利用絕對值的意義求得不等式f(x)≤4的解集.(2)根據(jù)絕地值的意義求得函數(shù)f(x)=|x+2|+|x|的最小值為2,故有2>|3a﹣1|,由此求得a的范圍.
【考點精析】認真審題,首先需要了解絕對值不等式的解法(含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號).
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項公式an;
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】潮州統(tǒng)計局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分
布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在)。
(1)求居民月收入在的頻率;
(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);
(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這人中分層抽樣方法抽出人作進一步分析,則月收入在的這段應抽多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=aln(x+1)+ x2﹣x,其中a為實數(shù).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:2f(x2)﹣x1>0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知且,函數(shù).
(1)求的定義域及其零點;
(2)討論并用函數(shù)單調(diào)性定義證明函數(shù)在定義域上的單調(diào)性;
(3)設,當時,若對任意,存在,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點M,N兩點.
(1)求k的取值范圍;
(2)請問是否存在實數(shù)k使得 (其中O為坐標原點),如果存在請求出k的值,并求|MN|;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在55名男性駕駛員中,平均車速超過100km/h的有40人,不超過100km/h的有15人.在45名女性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有25人.
(1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認為平均車速超過100km/h的人與性別有關(guān).
平均車速超過 | 平均車速不超過 | 合計 | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計 |
(2)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機抽取3輛,記這3輛車中駕駛員為男性且車速超過100km/h的車輛數(shù)為 ,若每次抽取的結(jié)果是相互獨立的,求 的分布列和數(shù)學期望.
參考公式與數(shù)據(jù): ,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中, 為線段上的動點,則下列判斷錯誤的是( )
A. 平面 B. 平面
C. D. 三棱錐的體積與點位置有關(guān)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com