4.已知a-a-1=1,求下列各式的值:
(1)a2+a-2
(2)$\frac{({a}^{3}+{a}^{-3})({a}^{2}+{a}^{-2}-3)}{{a}^{4}-{a}^{-4}}$.

分析 根據(jù)指數(shù)冪的運(yùn)算性質(zhì)即可求出.

解答 解:(1)a2+a-2=(a-a-12+2=12+2=3,
(2)∵a2+a-2-3=0,
∴$\frac{({a}^{3}+{a}^{-3})({a}^{2}+{a}^{-2}-3)}{{a}^{4}-{a}^{-4}}$=0.

點(diǎn)評(píng) 本題考查了指數(shù)冪的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在三棱錐S-ABC中,∠ASB=∠BSC=60°,∠ASC=90°,且SA=SB=SC,求證:平面ASC⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.方程2x-x3=0的一個(gè)近似解為1.5.(精確到0.1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.計(jì)算下列各式的值:
①4lg2+3lg5-lg$\frac{1}{5}$;
②$\frac{lo{g}_{5}\sqrt{2}•lo{g}_{49}81}{lo{g}_{25}\frac{1}{3}•lo{g}_{7}\root{3}{4}}$;
③2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$;
④log2$\sqrt{8+4\sqrt{3}}$+log2$\sqrt{8-4\sqrt{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)y1=($\frac{2}{3}$)${\;}^{3{x}^{2}+2}$,y2=($\frac{2}{3}$)${\;}^{{x}^{2}+4}$,求使y1<y2的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.判斷下列各式那些一定成立,哪些不一定成立,x,y為非零實(shí)屬,其中a>0,a≠1,并說(shuō)明理由.
(1)logax2=2logax.
(2)logax2=2loga|x|.
(3)loga|x•y|=loga|x|•loga|y|
(4)logax3>logax2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若f(x)=x+b的零點(diǎn)在區(qū)間(0,1)內(nèi),則b的取值范圍為(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知下列結(jié)論:
①函數(shù)y=2x與函數(shù)y=log2x的圖象關(guān)于y軸對(duì)稱;
②方程log5(2x+1)=log5(x2-2)的解集為{-1,3};
③函數(shù)f(x)=ln(1+x)-ln(1-x)為奇函數(shù).
其中正確的結(jié)論是③.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在△ABC中,“sinA+sinB=cosA+cosB”是“C=90°”的充分必要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案