14.在三棱錐S-ABC中,∠ASB=∠BSC=60°,∠ASC=90°,且SA=SB=SC,求證:平面ASC⊥平面ABC.

分析 令SA=SB=SC=a,結(jié)合條件,求得AB=BC=a,AC=$\sqrt{2}$a,有勾股定理的逆定理,可得△ABC為直角三角形,取AB的中點(diǎn)O,連接SO,BO,由線面垂直的判定定理,可得SO⊥平面ABC,再由面面垂直的判定定理,即可得證.

解答 證明:令SA=SB=SC=a,
由∠ASB=∠BSC=60°,∠ASC=90°,
即有AB=BC=a,AC=$\sqrt{2}$a,
則△ABC為直角三角形,且∠ABC=90°,
取AB的中點(diǎn)O,連接SO,BO,
由SA=SB,可得SO⊥AC,
由SB=a,OB=SO=$\frac{\sqrt{2}}{2}$a,即有SO⊥OB,
由OB∩AC=O,
可得SO⊥平面ABC,
由SO?平面SAC,
則平面SAC⊥平面ABC.

點(diǎn)評(píng) 本題考查面面垂直的判定定理的運(yùn)用,考查空間線面的位置關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=x2-2x-3在x∈[-3,2]上的值域是[-4,12].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,且g(n)=$\frac{1}{f(n)-1}$[f(1)+f(2)+…十f(n-1)].
(1)寫(xiě)出g(2),g(3),g(4)的值;
(2)歸納g(n)的值,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(1)已知x,y∈R+,x≠y,求證:$\frac{1}{x}$$+\frac{1}{y}$$>\frac{2}{x+y}$;
(2)如何改進(jìn)上述結(jié)論,使之成為-個(gè)更好的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}-2m+1,x≤0}\\{3x-4,x>0}\end{array}\right.$,(m∈R),若函數(shù)f(x)在R上有且僅有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如果對(duì)任意x、y∈R都有f(x+y)=f(x)•f(y),且f(1)=2.
(1)求f(2)、f(3)、f(4)的值;
(2)求$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+$\frac{f(6)}{f(5)}$+…+$\frac{f(2012)}{f(2011)}$+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2014)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)x>0,函數(shù)f(x)=x•3x-318的零點(diǎn),x0∈(k,k+1)(k∈N*),則k=(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知:梯形ABCD中,AD∥EF∥BC,AE=2BE,AD=2,BC=5,設(shè)$\overrightarrow{AD}$=$\overrightarrow{a}$,用$\overrightarrow{a}$表示$\overrightarrow{EF}$,$\overrightarrow{CB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知a-a-1=1,求下列各式的值:
(1)a2+a-2
(2)$\frac{({a}^{3}+{a}^{-3})({a}^{2}+{a}^{-2}-3)}{{a}^{4}-{a}^{-4}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案